当前位置:空空范文网>教育范文>教案>梯形面积的教案

梯形面积的教案

时间:2024-07-29 11:36:20 教案 我要投稿

梯形面积的教案

  作为一位杰出的老师,常常要写一份优秀的教案,教案是教学蓝图,可以有效提高教学效率。来参考自己需要的教案吧!下面是小编精心整理的梯形面积的教案,仅供参考,欢迎大家阅读。

梯形面积的教案

梯形面积的教案1

  练习要求:使学生进一步掌握梯形面积的计算公式,能正确、熟练地计算梯形的面积。

  练习重点:应用所学的知识解决一些实际问题。

  练习过程:

  一、基本练习

  1.口算:练习十八第5题。根据学生情况,限时做在课本上,集体订正。

  7.2÷0.122.4÷0.30.2×12.6×5

  0.38×10000.8×2526.1-3.5-7.5

  3.8+2.5+6.210÷2.54.8×0.2+5.2×0.2

  2.看图思考并回答。

  (1)怎样计算梯形的面积?

  (2)梯形面积的计算公式是怎样推导出来的?

  (3)右图所示梯形的面积是多少?

  二、指导练习

  1.练习十八第6题,名数的改写。

  (1)名数的改写方法是什么?根据学生的回答板书:

  除以它们之间的进率

  低级单位高级单位

  乘它们之间的进率

  (2)根据改写的方法将第6题的结果填在课本上。

  3.6公顷=()平方米1平方米=()公顷

  4平方千米=()公顷52公顷=()平方千米

  160平方厘米=()平方分米=()平方米

  0.25平方米=()平方分米=()平方厘米

  (3)集体订正时让学生讲一讲自己的想法。

  2.练习十八第8题:科技小组制作飞机模型,机翼的`平面图是两个完全相同的梯形制成的(如图)。它的面积是多少?

  (1)生独立审题,分小组讨论解法。

  (2)选代表列出解答算式,不计算。

  (3)由学生讲所列算式的想法,

  (4)指导学生讲“(100+48)×250”为什么不除以2?

  (5)学生计算出它的面积,集体订正。

  三、课堂练习

  1.练习十九第7题:根据表中所给的数值算出每种渠道横截面的面积。

  渠口宽(米)

  3.1

  1.8

  2.0

  2.0

  渠底宽(米)

  1.5

  1.2

  1.0

  0.8

  渠深(米)

  0.8

  0.8

  0.5

  0.6

  横截面面积(平方米)

  生独立解答出结果并填在课本上,集体订正。

  2.练习十八第10题:一个果园的形状是梯形。它的上底是180米,下底是160米,高是50米。如果每棵果树占地10平方米,这个果园有多少平方米?

  四、作业

  练习十九第9题。

梯形面积的教案2

  教学目标

  1、使学生经历操作、观察、填表、讨论、归纳等数学活动,探索并掌握梯形的面积公式,能正确地计算梯形的面积,并应用公式解决实际问题。

  2、使学生进一步体会转化方法的价值,培养学生应用已有知识解决新问题的能力,发展学生的空间观念和初步的推理能力。

  教学

  重难点

  教学重点:理解并掌握梯形面积的计算公式

  教学难点:理解梯形面积公式的推导过程

  课前准备

  多媒体课件

  教学过程

  师生活动

  思考与调整

  一、复习导入:

  1、回顾三角形面积公式的推导过程

  2、导入:今天我们继续运用这种方法来研究梯形面积的计算。

  二、探究新知:

  1、教学例6:

  (1)出示例6:

  师:用例6中提供的梯形拼成平行四边形。(注意:组内所选的梯形都要齐全)

  (2)小组交流:

  你认为拼成一个平行四边形所需要的两个梯形有什么特点?要使学生明确:用两个完全一样的梯形可以拼成一个平行四边形。

  (3)测量数据计算拼成的平行四边形的面积和一个梯形的面积并填表。

  师:如何计算一个梯形的面积?从表中可以看出梯形与拼成的平行四边形还有怎样的关系?(小组交流)

  得出以下结论:

  这两个完全一样的梯形,无论是直角梯形、等腰梯形、还是一般的梯形,都可以拼成一个平行四边形。

  这个平行四边形的底等于梯形的上底+下底

  这个平行四边形的'高等于梯形的高

  因为每个梯形的面积等于拼成的平行四边形面积的一半

  所以梯形的面积=(上底+下底)×高÷2

  板书如下:

  平行四边形的面积=底×高

  2倍一半

  梯形的面积=(上底+下底)×高÷2

  师生活动

  思考与调整

  (4)用字母表示三角形面积公式:S=(a+b)h÷2

  三、巩固练习:

  1、完成试一试:

  1、完成练一练:

  (1)学生计算后提问:用上、下底的和乘高后,为什么还要除以2?

  (2)结合直观的图形或教具演示,简单介绍横截面的含义,再让学生结合公式进行计算。

  四、全课总结:

  师:通过今天的学习有哪些收获?

  板书设计:梯形面积的计算

  转化

  已学过的图形新图形

  拼摆

  因为平行四边形的面积=底×高

  2倍一半

  所以梯形的面积=(上底+下底)×高÷2

  教学得与失:

梯形面积的教案3

  教学内容:完成第21页练习四

  教学目标:

  使学生进一步熟悉梯形面积的计算公式,熟练地计算不同梯形的面积。

  教学过程:

  练习四

  一、第2题让学生先在小组里说说怎样找出面积相等的梯形。由于这4个梯形的高相等,只要比较它们的商、下底的和是否相等。这几个梯形中,除左起第3个梯形之外,其余的面积都是相等的。

  二、第3题右图是直角梯形,可以通过讨论使学生明白:直角梯形中与上、下底垂直的那条腰的长度就是梯形的'高。

  三、第5题要注意两个问题:1、统一面积单位;2、讲清楚数量关系。

  四、第6题先搞清楚水渠和拦水坝的横截面积分别是指图中的哪个部分,分别是什么形状,图中标出的条件又有哪些。在此基础上,再让学生分别进行计算。

  五、针对学生在学习过程中出现的问题适当的进行补充和强化。

梯形面积的教案4

  教学内容:

  教科书88页和89页

  教学目标:

  (1)探究梯形面积计算,理解公式的推 导过程,会应用公式正确计算梯形的面积。

  (2)培养学生合作学习的能力以及动手操作能力。

  (3)进一步渗透旋转、平移的数学思想。

  教学重点:理解并掌握梯形面积公式的计算方法。

  教学难点:理解梯形面积公式的推导过程。

  教具准备:多媒体课件

  教学过程:

  一、创设情境,引出问题

  教师用多媒体课出示:王大爷家有一块果园地(梯形地上底300米,下底200米,高100米),如果每棵桃树占地10平方米,那么王大爷家这块果园地里一共有多少棵桃树?

  问:同学们这块地是什么图形啊?

  生1:这是一个梯形。

  问:要想求果园地里一共有多少棵桃树,必须先知道什么呢?

  生2:必须先知道梯形的面积。

  师:今天我们这节课就来研究“梯形面积的计算”(板书)。

  二、探究新知。

  (1)、铺垫孕伏。

  组织学生回忆平行四边形、三角形面积公式推导的方法及过程,

  重点突出旋转、平移、割补的数学思想。

  (2)、协作研讨,探求方法

  1、教师把学生分成若干个小组,每个小组4至6名学生,每个小组发给若干张梯形纸(上底3厘米,下底5厘米,高4厘米)。

  师:谁能介绍一下这个梯形?

  生3:这个梯形的上底是3厘米,下底是5厘米,高是4厘米。

  师:下面我们各小组利用手中的工具来探究梯形面积的计算公式,看哪个小组的方法最多!哪个小组协作能力最强!

  2、教师用课件出示探究要注意的事项,让学生进行小组合作,动手操作,探究梯形面积的计算。(教师注意合作方法的指导,要求同学之间互相交流、合作,把梯形面积的计算方法小组汇报给同学听,把计算过程写在本子上,最后推荐代表进行汇报。每一次汇报,教师利用多媒体演示、小结。)

  生4: (3+5)42=16(平方厘米)

  生5: 542+342=16(平方厘米)

  生6: (5+3)42=16(平方厘米)

  生7: (5-3)42+34=16(平方厘米)

  生8: (5+3)(42)=16(平方厘米)

  生9: (3+5)24=16(平方厘米)

  生10: 34+(5-3)42=16(平方厘米)

  师生交流、点评……

  3、总结规律,渗透数学思想方法

  师:这些方法有什么共同的地方吗?

  生11:结果都是16平方厘米。

  生12:每种方法的计算过程中都用到3、4、5、2这几个数字。

  师:这几个数字和梯形有什么关系吗?

  生13:梯形的上底是3厘米,下底是5厘米,高是4厘米。

  师:现在谁能猜一猜梯形的面积计算公式是怎样的?

  生14:梯形的面积=(上底+下底)高2

  师:如果用字母S表示梯形的面积,a表示梯形的上底,b表示梯形的下底,h表示梯形的高,那么梯形的面积计算公式用字母怎样表示?

  生15:S=(a+b)h2

  三、应用知识,解决问题

  1、回到课堂初提出的问题,让学生帮王大爷计算果园地里一共有多少棵桃树。

  生16:(300+200)100210=2500(棵)

  2、学生完成基础变式练习:“做一做”和练习十八的1~3题。

  3、提高能力练习:共同探讨练习十八的第四题。

  四、知识小结,体验学习的快乐!

  教学反思:

  新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。这节课上完以后我觉得有成功,也有一些不足:

  一、动手操作,培养探索能力

  在推导梯形面积计算公式时,安排学生合作学习,放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生说说可以把梯形转化成已经学过的什么图形?用两个完全一样的梯形拼一拼,看一看能拼成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的'。

  二、发散验证培养解决问题的能力

  在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过“拼、剪、说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。在本课教学中,我比较注重培养学生的推理、操作探究及自主学习的能力。学生在拼一拼、剪一剪以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。反思整个课堂教学过程,还是存在着一些问题。首先缺少学生之间的互动。数学课是数学活动的教学。这个活动不仅仅表现在学生的动手操作上,更重要的还应该表现在师生之间、学生之间的多向互动上。反思本课的教学,在学生向全班汇报了转化过程及计算方法后,急于展示自己学习成果的同学与老师展开了一对一的交流,老师忽视了对其他学生的关注。这样不利于培养了学生与学生之间提问题的能力与意识,不利于形成了生生交流的良好的课堂学习氛围,再有这节课在把梯形转化成各种三角形、平行四边形方法很多,学生的很多想法出乎我的预设,问题就是在黑板上展示多种方案中,从原先的设计中,是将重点放在“用两个完全一样的梯形拼成一个平行四边形”的方案上,并让学生多多互动交流;然而,从试教的实际效果上看,学生还是最喜欢的并不是这种方案。那么,到底将学生全员参与的活动安排在哪里呢?

  我觉得课堂中反问和追问的艺术很值得研究,从教学语言可以窥出一个教师调控课堂有效展开的功力,然而,我却发现现在的我却在教学语言上显得贫瘠繁琐,尤其是这些空间图形的课堂。教学活动是否有效展开往往会成为评定一堂课是否精彩的重要筹码。纵观整堂课,我一直在思考:如何才能让活动探究得更加有效?活动的时间如何控制?这些还是我要亟待改造的地方。

梯形面积的教案5

  【教学内容】九年义务教育课本数学五年级第一学期(试用本)第65页

  【教学目标】

  1. 知识与技能

  (1)通过拼、摆等操作活动,探究并掌握梯形面积的计算方法。

  (2)能根据梯形面积计算公式,正确计算梯形的面积。

  2. 过程、能力与方法

  通过观察、比较、分析以及动手操作等自主探究活动,经历梯形面积公式的推导过程,发展空间观念。

  3. 情感、态度与价值观

  在个体探究与合作学习相结合的学习活动中获取新知,体验成功的喜 悦。

  【教学重点】理解梯形面积的计算方法,正确计算梯形的面积。

  【教学难点】梯形面积计算方法的推导过程。

  【教学准备】

  课件、剪刀、梯形纸。

  【教学过程】

  一、复习导入

  1. 复习长方形、平行四边形、三角形的面积计算方法。

  2. 出示课题:梯形的.面积

  二、新知探究

  1. 联想猜测、探求方案

  猜测:计算梯形的面积,需要知道什么条 件?

  【策略说明:学生之前已亲历了平行四边形和三角形面积公式的探究过程,对“转化”思想在推导平面图形面积公式中的作用已有了 较深的感受,因此放手让学生自主解决,创设出较大的探究空间以激发学生的创造性。】

  2. 小组合作,实验 探究。

  探究:利用已有知识,计算梯形面积。

  (1)提出小组合作的要求

  (2)自主探究,合作学习

  (3)全班汇报交流

  【策略说明:通过小组合作,让学生自主探究,用不同的方法把梯形转化成了学过的图形并进行计算,初步感知梯形面积计算的方法。】

  3. 归纳总结,推导公式

  归纳:梯形面积的计算公式。

  (1)指导看书

  (2)反馈交流

  【策略说明:再次合作,运用运算定律和运算性质,统一梯形面积的计算方法,归纳梯形面积计算公式。】

  4.巩固新知:

  求出以下梯形的面积(每个小方格都是边长为1厘米的正方形)

  【策略说明:通过练习,让学生体会 ,如果几个梯形的上底、下底和高分别对应相等,那么它们的面积不受形状的影响,也分别相等。】

  三、拓展思维

  介绍利用梯形面积的其他推导方法

  【策略说明:通过媒体演示将三角形、梯形、平行四边形统一起来,初步渗透梯形中位线的概念,可对梯形的面积计算方法加以拓展,延伸,并进一步促进学生空间观念的发展 。】

  四、综合练习

  在方格纸上画一个面积为6平方厘米的梯形。

  【策略说明:利用方格图,画规定 面积的梯形,既可以巩固梯形的计算方法, 也可以再一次沟通梯形与其他平面图形面积计算之间 的关系,达到灵活运 用,举一反三的目的。】

梯形面积的教案6

  重点难点

  使学生进一步熟悉梯形面积的计算公式,熟练地计算不同梯形的面积。

  教学准备

  含资料辑录或图表绘制

  教和学的过程

  一、练习

  二、

  练习

  一、第2题

  让学生先在小组里说说怎样找出面积相等的梯形。由于这4个梯形的高相等,只要比较它们的商、下底的和是否相等。这几个梯形中,除左起第3个梯形之外,其余的面积都是相等的。

  二、第3题

  右图是直角梯形,可以通过讨论使学生明白:直角梯形中与上、下底垂直的那条腰的长度就是梯形的高。

  三、第5题

  要注意两个问题:1、统一面积单位;2、讲清楚数量关系。

  四、第6题

  先搞清楚水渠和拦水坝的横截面积分别是指图中的哪个部分,分别是什么形状,图中标出的条件又有哪些。在此基础上,再让学生分别进行计算。

  五、针对学生在学习过程中出现的.问题适当的进行补充和强化。

  通过今天的练习我们对梯形面积计算方法的运用就更加熟练了,在以后的学习生活中我们还要多用它去解决一些实际问题,达到学以致用的目的。

梯形面积的教案7

  教学内容:

  小学数学第七册74—75页的内容

  教学目的:

  1、使学生在理解的基础上掌握梯形面积的计算公式,能够正确的计算梯形的面积,数学教案-梯形面积计算。

  2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

  教学重点、难点:

  理解梯形面积计算公式的推导,并能应用公式正确的进行计算。

  教具准备:

  课件。

  教学过程:

  (一)复习旧知,做好铺垫。

  1、指名让学生说说平行四边形和三角形的面积公式,(课件出示公式)并讲讲怎样推导三角形的面积公式的。

  2、练习(出示)

  口答下面各图形的面积。(单位:厘米)

  (二)创设情景,提出问题

  师:前不久,我们学校开展“植树护绿”活动,四年级同学要在劳动实践基地的一块空地里种桃树,你们看看这块地的形状近似于那种平面图形呢?(课件显示图)

  师:谁能指出这个梯形的上底、下底和高各是多少?(指名回答)

  师:如果每棵桔树占地4平方米,那么这块地里能种多少棵桔树呢?(让学生思考一下)你认为应该先求什么?(指名说说,引入新课。)

  (三)小组学习,解决问题。

  师:梯形面积怎么计算呢?它是不是也有公式呢?下面就请同学们小组合作,想办法推导出梯形面积公式,看一下合作要求:(课件出示)

  合作要求:

  (1)想一想:我们已经学过哪几种图形的面积公式?

  (2)试一试:把梯形转化成已经学过的图形,小学数学教案《数学教案-梯形面积计算》。(任选一种)

  (3)比一比:转化成的图形的各部分跟梯形的各部分有什么关系?

  (4)写一写:把梯形面积公式的推导过程写下来。学生分组讨论。

  全班交流时,教师根据学生说的方法用课件演示转化及推导过程。

  教师板书:梯形的面积=(上底+下底)×高÷2,并让学生讲讲为什么要“÷2”。)

  师:如果用s表示梯形的面积,a表示梯形的上底,b表示梯形的下底,h表示梯形的高,梯形的面积计算公式用字母该怎样表示呢?(学生回答,教师板书:S=(a+b)h÷2)

  师:梯形的面积公式推导出来了,我们就可以帮助四年级同学解决问题了。

  课件出示:四年级同学要在一块梯形地里种树,如图,如果每棵树占地4平方米,那么这块地里能种多少棵树?

  让学生独立计算,在集体订正。

  师:同学们的表现都非常出色,你们帮助四年级同学解决了这个难题,我代表他们感谢你们。

  (四)应用拓展,巩固知识。

  师:下面我们来做练习吧。

  1、一☆练习

  a.课件出示:P75例1,指名读题,教师出示渠道模型说明“横截面”的意思,再由学生解答,完成后集体订正。

  b.课件出示:P75做一做,由学生独立完成,集体订正。

  c.课件出示:判断

  1)两个梯形能拼成一个平行四边形。( )

  2)平行四边形的.面积是梯形面积的2倍。( )

  让学生独立判断,并说明理由。

  2、二☆练习

  a.课件出示:

  一个梯形的上底是9厘米,比下底短3厘米,高是1分米,它的面积是多少?小组计算,集体交流。

  b.课件出示:

  我们经常见到圆木,钢管等堆成如图的形状,通常用下面的算法求总根数:

  (顶层根数+底层根数)×层数÷2

  想一想是什么道理,并算出图中圆木的总根数。

  3、三☆练习

  课件出示:用篱笆围成一块养鸡场(如图),一边靠墙,篱笆总长65米,求养鸡场的面积。

  学生独立解答,再交流。

  (五)小结全课,结束教学

  让学生讲讲这节课的收获,并布置作业。

  有时间的话做“思考”

  在下图的梯形中,剪下一个最大的三角形,剩下的是什么图形?剩下的图形的面积是多少平方厘米?

梯形面积的教案8

  教学内容:

  p.21练习四

  教学目标:

  1,使学生进一步熟悉梯形面积的计算公式,熟练地计算不同梯形的面积。

  2,培养灵活利用公式解决实际问题的能力。

  3,培养学生良好的合作探究意识。

  教学重点:

  进一步掌握梯形面积的概念,能较熟练掌握梯形面积的计算方法。

  教学过程:

  一,画图(图:一直角)

  问:你看到什么两条边上分别标上长度:4厘米,2厘米

  你能联想到什么图形面积是多少

  (1)长方形,长是4厘米,宽是2厘米。面积:4×2=8平方厘米

  (2)三角形,底4厘米,高2厘米,面积:4×2÷2=4平方厘米

  (3)梯形,补充算式”(4+3)×2÷2“,指名画完该图形。

  关注细节:

  (1)在计算时,最后的单位名称不要漏写

  (2)画图时,要把关键长度的数据标出来。

  (3)题目中,最后问题带” “的要写答句。

  二,检查预习作业:

  1,看图计算梯形的面积。要让学生明确互相平行的两条边分别为上底和下底,并不是上面的边和下面的边;确定了上底和下底之后再确定高。

  2,学生有困难的题:用58米长的篱笆,在靠墙的地方围一块菜地(图略),这块菜地的面积是多少平方米

  先指名说说梯形的面积,师板书。

  对照公式,找已知条件和所缺条件。

  明确:还缺上底和下底的和,通常可以用上底加下底,但这题中要用三条边的长度减去高。

  算式:(58—10)×10÷2=240平方米

  三,完成书上的练习四:

  1,用两个完全一样的梯形拼成一个平行四边形。已知每个梯形的面积是24平方分米,拼成的三边形的面积是多少平方分米

  指名读题,比画该题。学生列式交流。

  2,下面图中哪几个梯形的面积相等为什么

  观察,问:这些梯形有什么共同点(高相等)

  利用这个特点,你觉得可以怎么找面积相等的梯形为什么

  (方法一:分别算出四个梯形的面积。

  方法二:只要看上底与下底的.和是否相等。)

  学生数一数,算一算,交流最后结果。

  3,量出下面每个梯形的上底,下底和高,算出它们的面积。

  学生独立完成后交流。

  4,”银苏号"滑翔机模型的尾翼是由两个完全相同的梯形组成的,它的面积是多少

  观察图后说说自己准备怎么算

  交流方法:

  方法一,梯形面积乘2。

  方法二,移动后得到一个平行四边形,算平行四边形的面积。

  5,第5题,学生读题后解决。讲评时要注意

  (1)计算方法的指导;

  (2)单位的转换。

  6,第6题,学生独立完成并校对。

梯形面积的教案9

  教学目的:

  使学生进一步掌握梯形面积的计算公式,能正确、熟练地计算梯形的面积。

  教学重点:

  应用所学的知识解决一些实际问题。

  教学准备:

  实物投影仪等。

  练习过程:

  一、基本练习

  1.口算:练习十八第5题。根据学生情况,限时做在课本上,集体订正。

  7.2÷0.122.4÷0.30.2×12.6×5

  0.38×10000.8×2526.1-3.5-7.5

  3.8+2.5+6.210÷2.54.8×0.2+5.2×0.2

  2.看图思考并回答。

  (1)怎样计算梯形的面积?

  (2)梯形面积的计算公式是怎样推导出来的?

  (3)右图所示梯形的面积是多少?

  二、指导练习

  1.练习

  (1)名数的改写方法是什么?根据学生的回答板书:

  除以它们之间的'进率

  低级单位高级单位

  乘它们之间的进率

  (2)根据改写的方法将第6题的结果填在课本上。

  3.6公顷=()平方米1平方米=()公顷

  4平方千米=()公顷52公顷=()平方千米

  160平方厘米=()平方分米=()平方米

  0.25平方米=()平方分米=()平方厘米

  (3)集体订正时让学生讲一讲自己的想法。

  2.练习:科技小组制作飞机模型,机翼的平面图是两个完全相同的梯形制成的(如图)。它的面积是多少?

  (1)生独立审题,分小组讨论解法。

  (2)选代表列出解答算式,不计算。

  (3)由学生讲所列算式的想法,

  (4)指导学生讲“(100+48)×250”为什么不除以2?

  (5)学生计算出它的面积,集体订正。

  三、课堂练习

  1.练习:根据表中所给的数值算出每种渠道横截面的面积。

  渠口宽(米)3.11.82.02.0

  渠底宽(米)1.51.21.00.8

  渠深(米)0.80.80.50.6

  横截面面积

  (平方米)

  生独立解答出结果并填在课本上,集体订正。

  2.练习一个果园的形状是梯形。它的上底是180米,下底是160米,高是50米。如果每棵果树占地10平方米,这个果园有多少平方米?

梯形面积的教案10

  班级情况及学生特点分析:

  我所任教的五年级二班学生共52人,因为我班的学生基础较差,上课好动,作业拖拉,虽然训练一个学年,但还是不令人十分满意 。因此教学借助多媒体课件及自制学具来激发他们的学习兴趣,设计使学生带着"想知道梯形的面积是多少吗?你用什么方法知道它们的面积呢?"先独立操作,然后再小组交流,集中小组中不同的解法。然后再全班以组进行汇报在教学中我以学生的发展为着眼点,大力培养学生的综合能力,拓宽学生视野,改变学生的方式,逐渐尝试建立发现问题――自主探究--解释应用的教学模式,确立以学生为主体的探索性学习方式。

  教学内容:梯形面积的计算。

  教学内容分析:

  本节课是北师大教材五年级上册第二单元“图形的面积”中的一课时,教学内容是梯形的面积计算。梯形的面积是在学生掌握基本平面图形的特征和求三角形、平行四边形面积的基础上的进一步扩展,教材这样安排的目的是通过学生观察比较的活动,让每个学生懂得面积计算方法的多样化。同时,也让他们掌握梯形的面积计算公式的来源。这样,也为学生自己探索基本图形面积计算打下基础。

  教学目标:

  1.理解、掌握梯形面积的计算公式,并能运用公式正确计算梯形的面积。

  2.发展学生空间观念。培养抽象、概括和解决实际问题的能力。

  3.掌握“转化”的思想和方法,进一步明白事物之间是相互联系,可以转化的。

  教学重点:理解、掌握梯形面积的计算公式。

  教学难点:理解梯形面积公式的推导过程。

  教学课时:1课时

  教学准备:

  1. 学生准备两个完全一样的梯形。

  2. 老师准备多媒体课件。

  教学过程:

  1.导入新课

  (1)投影出示一个三角形,提问:

  这是一个三角形,怎样求它的面积?三角形面积计算公式是怎样推导得到的?学生回答后,指名学生操作演示转化的方法。

  (2)展示台出示梯形,让学生说出它的上底、下底和各是多少厘米。

  (3)教师导语:我们已学会了用转化的方法推导三角形面积的计算公式,那怎样计算梯形的面积呢?这节课我们就来解决这个问题。(板书课题,梯形面积的计算)

  2.新课展开

  第一层次,推导公式

  (1)操作学具

  ①启发学生思考:你能仿照求三角形面积的办法,把梯形也转化成已学过的图形,计算出它的面积吗?

  ②学生拿出两个完全一样的梯形,拼一拼,教师巡回观察指导。

  ③指名学生操作演示。

  ④教师带领学生共同操作:梯形(重叠) 旋转 平移 平形四边形。

  (2)观察思考

  ①教师提出问题引导学生观察。

  a. 用两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底和高与梯形的底和高有什么关系?

  b. 每个梯形的面积与拼成的平形四边形的面积有什么关系?

  (3)反馈交流,推导公式。

  ①学生回答上述问题。

  ②师生共同总结梯形面积的计算公式。

  板书:梯形的面积=(上底+下底)×高÷2

  ③字母表示公式。 教师叙述:如果有S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,怎样用字母表示梯形面积的计算公式呢?

  学生回答后,教师板书:“S=(a+b)h÷2”。

  第二层次,深化认识。

  (1)启发学生回忆平行四边形面积公式的推导方法。

  ①提问:想一想平行四边形面积公式是怎样推导得到的?

  ②学生回答,教师在展示台再现平行四边形面积公式的推导方法。

  (2)引导操作。

  ①学习平行四边形面积时,我们用割补的方法把平行四边形转化成长方形。能否仿照求平行四边形面积的方法,把一个梯形转化成已学过的图形,推导梯形面积的计算公式呢?

  ②学生动手操作、探究、讨论,教师作适当指导。

  (3)信息反馈,扩展思路。

  说一说你是怎样割补的?教师展示各种割补方法。

  第三层次,公式应用。

  (1)出示课本第89页的例题,教师指导学生理解“横截面”。

  (2)学生尝试解答。

  (3)展示台出示例题的解答,反馈矫正。

  (4)完成例题下面的“做一做”。

  3.巩固练习

  (1)完成练习十七第1、2和3题。

  (2)讨论完成练习十七第4和6题。

  4.全课小结

  这节课你们有什么收获?你们还想了解什么?学生列举活动中的种种收获、困惑。教师给予引导、肯定、鼓励和指正。

  课后反思:

  !《梯形面积的计算》教学反思

  在经历了平行四边形和三角形的面积计算公式推导过程的体验基础上,教学这部分内容时,我放手让学生自主探究新知,并引导学生从不同途径验证,学生参与的积极性高,课堂生动活泼,效果显著。具体情况如下:

  一、提出问题,激发兴趣

  我先运用投影出示了一个三角形,让学生回顾三角形的面积计算方法,然后直接抛出探究任务:梯形的面积是怎样计算的呢?你能用学过的方法把梯形转化成学过的图形,从而推导出梯形的面积公式吗?

  学生对具有挑战性的问题还是有很高的兴趣的`,所以马上就自发组合成探究小组。

  二、注重合作,促进交流

  学生在前面学习的经验基础上,最容易想到的是模仿三角形的面积公式的推导方法进行转化,所以很快从书上的129页找到了两个完全一样的梯形开始做起来。

  这时,我提醒他们:“小组的同学可以相互配合呀!每人做一组,然后一起讨论:梯形的上底、下底、高与拼成的图形各部分之间有什么联系?这样就容易发现梯形的面积公式了!”

  学生很轻松地完成了探究任务,自豪写在脸上。因为是自己探究完成得出的结论,所以他们有话可说,我就让学生充分交流,让他们多说,并引导他们说准确,说具体,还建议他们利用学具进行演示,整个过程中学生都感受着成功。

  三、思维拓展,能力提升

  新课的探究活动进行到这里,似乎该结束了,可我却抓住这时学生探究的热情继续拓展:你们能试着用其他方法推导出梯形面积公式吗?

  开始时,学生显得毫无头绪,我偶然发现一个学生在折手中的梯形,就不失时机地提醒他:“你看你把梯形分成两个部分了,你能分别表示出两个部分的面积吗?”学生兴趣盎然。很快就表示出两个三角形的面积,即:上底×高÷2、下底×高÷2,于是引导学生把两个算式加起来,从而推导出梯形面积公式便成为可能,因为学生在四年级时已经学过类似的乘法分配率的知识,所以可以看出大多数学生还是理解了。

  很多学生是理解了把梯形分成两个三角形来推导梯形面积计算公式的,而受此启发,又有学生把梯形分成一个平行四边形和一个三角形,此时,教室里自发地形成讨论小组作进一步的推理论证,教学活动到这时达到一个高潮。

  由于这节课花了较多的时间带领学生们探究梯形面积公式的推导过程,特别是从不同的视角给学生提供了更多的探究机会,使教学活动不局限于课本,不拘泥于教材,给学生更多的思维拓展空间,学生的学习积极性得到了提升,但教学中没有更多的时间去进行巩固练习了。遗憾吗?不,我觉得这样经常把探究活动更深入地开展下去的教学更有利于学生的思维训练,更有利于学生的长远发展,因为我认为:学生学习的过程比结果应该更重要一些。

梯形面积的教案11

  教学内容:

  混合练习(课本第84-85页,练习十九第11-18题)

  教学目标:

  ⒈通过混合练习,理清多边形的面积计算公式,能够熟练地运用公式求面积和解答有关的应用问题。

  ⒉在复习与梳理中学会联系,进而提高综合分析解题能力。

  教学过程:

  一、复习梳理

  ⒈公式的复习

  我们已经学过各种多边形的面积计算公式,谁来说说这些公式各是什么?它们是怎样推导出来的`?

  师生共同进行:边回顾、边画图、边讨论;

  ⒉教师指出:多边形的面积公式是互相联系,彼此相关的,我们必须以长方形的面积公式为基础,以平行四边形的面积为重点,清楚地把握它们之间的同在联系和区别。

  二、练习巩固

  ⒈独立完成练习十九的第12题--看谁正确率最高!

  要求:开列已知条件;写出相应的面积公式;列式解答。

  ⒉完成第14题

  先议:⑴左图是什么图形?求面积需要哪些条件?怎么取得?⑵右图是什么图形?为什么?求它的面积需要量几个量?把它们分别量出来。

  ⒊完成第13和15题

  在求得面积之后,怎样选择算法求解。

  三、综合提高:

  讨论:

  ⑴平行四边形的底扩大3倍,高不变,面积怎样变化?如果高也扩大2倍呢?

  ⑵三角形的底不变,高缩小2倍,面积怎样变化?如果高缩小2倍,底扩大2倍,情况又怎样呢?

  ⑶一个三角形与一个平行四边形等底等面积,那么三角形底边上的高一定是这个平行四边形高的2倍,为什么?

  四、:

  多边形的面积计算,关键是公式的理解与熟练,同时在选用公式时,尤其注意哪些图形求面积时要÷2。

  五、板书设计:

  梯形面积的计算

  六、教后感:

  2、应用题

梯形面积的教案12

  教学目标

  1、通过操作、观察、比较等活动,自主探索梯形面积计算公式,渗透转化的数学思想方法。

  2、能正确地应用公式计算梯形的面积,并能解决生活中一些简单的实际问题。

  教学重难点

  教学重点:探索并掌握梯形面积计算公式。

  教学难点:理解梯形面积计算公式的推导过程,体会转化的思想。

  教学过程

  一、复习引入,知识铺垫

  计算下面各图形的面积:

  全班核对答案。

  教师:平行四边形、三角形的面积计算公式分别是什么?

  教师:它们之间有什么联系呢?

  因为两个完全重合的三角形可以拼成一个平行四边形,所以平行四边形面积的计算公式的一半就是三角形面积的计算公式。

  【设计意图】通过平行四边形、三角形的面积计算方法以及它们之间的联系,为学习新知做好方法上的准备。

  二、探究梯形面积的计算公式

  1、提出问题(课件出示教材第95页的主题图)。

  教师:同学们在图中发现了什么?

  教师:车窗玻璃的形状是梯形。怎样求出它的面积呢?

  教师:你能用学过的方法推导出梯形的面积计算公式吗?

  2、动手操作。

  (1)选择合适的材料,进行操作。(同桌合作)

  (2)反馈交流。

  让各小组充分展示操作过程。关键了解学生是怎样想的?询问其余同学是否有疑问?在操作中学生会发现,只有两个完全重合的梯形才能拼成一个平行四边形。

  预设:

  ①数方格;

  ②拼摆,转化成平行四边形;

  ③割,转化成两个三角形;

  ④割,转化成一个平行四边形和一个三角形;

  ⑤割,转化成长方形和两个三角形;

  ⑥割补法,转化成平行四边形。

  【设计意图】这一环节让学生大胆动手操作,在实验中不断发现解决问题,在同伴的交流中拓展自己的思维、视野。

  3、公式推导。

  (1)教师:

  方法①的数方格的方法中渗透着割补法的思想,

  方法②到方法⑥都是把梯形转化成我们已经学过面积计算方法的图形。

  先以方法②为例,观察原有的梯形和转化后的平行四边形,你发现它们之间有哪些等量关系?

  学生:梯形的上底与下底的和等于平行四边形的底,梯形的高和平行四边形的高相等。梯形的面积是平行四边形的面积的一半。

  学生边说,教师边课件演示。

  逐步完成板书:

  教师:如果用表示梯形的面积,表示梯形的上底,表示梯形的下底,表示梯形的高,梯形的面积公式还可以写成:(板书)。

  (2)教师:观察方法③,如果把梯形割成两个三角形,如何来推导梯形的面积计算公式呢?这两个三角形和原来的梯形有什么样的等量关系呢?

  学生:三角形1的底就是梯形的上底,三角形2的底就是梯形的下底,两个三角形的高都和梯形的高相等。两个三角形的面积之和就是梯形的面积。

  学生边说,教师边板书演示。

  教师:为了方便,我们直接用表示梯形的上底,用表示梯形的下底,表示梯形的高。

  教师:这与前面推导出来的梯形面积计算公式是一样的。

  (3)教师:观察方法④,如果把梯形分割成一个平行四边形和一个三角形,又如何推导公式呢?割成的平行四边形、三角形和原来的梯形有什么样的等量关系呢?

  学生:平行四边形的底就是梯形的上底,三角形的底等于梯形的下底减上底,平行四边形、三角形和梯形的高是相等的。平行四边形的面积加三角形的面积就等于梯形的面积。

  学生边说,教师边板书演示。

  其中的计算过程稍复杂,可配合教师讲解完成。

  教师:这和前面推导出来的结论是一样的。

  (4)教师:看方法⑤,把梯形分割成一个长方形和两个三角形,又如何推导公式呢?先说说它们之间有什么样的等量关系?

  学生:长方形的长就是梯形的上底,长方形、三角形和梯形的高是相等的。长方形加两个三角形的面积就是梯形的面积。

  学生发现两个三角形的底是多少,无法描述,不确定。这时,把两个三角形拼成一个三角形。新三角形的底就是梯形的下底减上底。

  教师边板书演示。

  教师:接下来的推导过程和方法④是一样的。

  (5)教师:方法⑥,通过割补法把梯形转化成平行四边形。它们之间又有什么样的等量关系呢?

  学生:平行四边形的底就是梯形的`上底和下底之和,平行四边形的高等于梯形的高的一半。平行四边形的面积和梯形的面积相等。

  教师课件演示。

  教师:通过上面多种转化方法,我们知道了梯形的面积计算公式,现在你知道要计算梯形的面积需要哪些数据了吗?(上底、下底、高)

  【设计意图】不满足于一种方法的公式推导,展示多种方法,开拓学生的思维,沟通多种推导方法之间的联系和区别,凸显转化思想的作用。

  三、学以致用

  1、出示教材第96页例3。

  例:我国长江三峡水电大坝的横截面的一部分是梯形,求它的面积?

  教师:什么是横截面?

  请学生独立解决,全班核对答案。

  教师:因为我们刚刚开始学梯形的面积公式,对公式不熟,所以计算时可以先写上公式,再列算式。等以后熟练了,公式可以省略。

  2、练习,出示教材第96页“做一做”。

  教师:这题特别要看清楚问题,问的是“它们的面积分别是多少”,所以问的是“左边梯形的面积是多少”和“右边梯形的面积是多少”,千万不要把“分别”看成“共”,变成求整个大梯形的面积。

  3、求面积,只列式不计算?

  4、求出这条水渠的横截面?

  5、有一个梯形果园,它的上底是45米,下底是60米,高是30米,如果每棵果树占地15平方米,这个果园大约可以种果树多少棵?

  6、判断:

  1、两个面积相等的梯形可以拼成一个平行四

  边形()。

  2、梯形面积是三角形面积的2倍()。

  3、一个梯形有无数条高()。

  4、如果梯形的面积是12平方厘米,两个完全一样的

  梯形拼成的平行四边形的面积是6平方厘米。()

  5、一个梯形上下底的和是20米,高是8米,这个梯

  形的面积是80平方米。()。

  【设计意图】因为学生第一次接触“横截面”,所以强调了对“横截面”的理解。从简到难,多层次对公式进行应用,在应用中加强对公式的理解。

  四、回顾反思

  教师:回顾本节课所学的内容,你最大的收获是什么?

  【设计意图】在总结回顾中,帮助学生进一步理解提升所学的知识。

  五、布置作业

  完成教材第97页第1题到第5题。

梯形面积的教案13

  教学目标

  1.在实际情境中,认识计算梯形面积的必要性。

  2.在自主探索中,经历推导梯形面积计算公式的过程。

  3.能运用梯形的面积公式,计算相关图形的面积,解决实际问题。

  教学重点

  经历推导梯形面积计算公式的过程。

  教学难点

  理解并能运用梯形的面积公式进行计算。

  教具、学具

  教学挂图,梯形纸片,剪刀,三角尺等。

  教师指导与教学过程

  学生学习活动过程

  设计意图

  一、复习

  平行四边形、三角形以及梯形的面积公式

  二、计算梯形面积时应注意的些什么?

  学生讨论后汇报总结。

  S=ah

  S=ah÷2

  S=(a+b)×h÷2

  1.必须知道底和高,计算单位要统一,底和高要对应。

  2.等底(底相等)等高(高相等)的两个梯形面积一定相等,形状不一定相同。

  3.完全一样的梯形可以拼成一个平行四边形,梯形的面积是平行四边形的面积的一半,平行四边形的面积是梯形面积的2倍。所以:

  巩固平行四边形和梯形的面积计算方法。

  让学生熟练的掌握各种有关梯形面积计算的.方法。能灵活运用。

  教师指导与教学过程

  学生学习活动过程

  设计意图

  三、练习

  练一练第1~3题。

  四、布置作业

  练一练第4题。

  已知梯形的底和高,求面积用(上底+下底)×高÷2。

  已知梯形的底和面积,求高,用面积×2÷(上底+下底)。

  板书设计:梯形的面积

  S=ah

  S=ah÷2

  S=(a+b)×h÷2

  教学反思:

梯形面积的教案14

  重点难点

  1、使学生经历操作、观察、填表、讨论、归纳等数学活动,探索并掌握梯形的面积公式,能正确地计算梯形的面积,并应用公式解决实际问题。

  2、使学生进一步体会转化方法的价值,培养学生应用已有知识解决新问题的能力,发展学生的空间观念和初步的推理能力。

  教学重点:理解并掌握梯形面积的计算公式

  教学难点:理解梯形面积公式的推导过程

  教学准备(含资料辑录或图表绘制)

  梯形面积的计算

  已学过的图形新图形

  因为平行四边形的面积底×高

  所以梯形的面积(上底+下底)×高÷2

  一、导入

  二、新授

  三、练习

  1、回顾三角形面积公式的推导过程

  2、导入:今天我们继续运用这种方法来研究梯形面积的计算。

  1、教学例6:

  (1)出示例6:

  用例6中提供的梯形拼成平行四边形。

  (2)你认为拼成一个平行四边形所需要的两个梯形有什么特点?

  要使学生明确:用两个完全一样的梯形可以拼成一个平行四边形。

  (3)测量数据计算拼成的平行四边形的面积和一个梯形的面积并填表。

  如何计算一个梯形的面积?从表中可以看出梯形与拼成的平行四边形还有怎样的关系?

  得出以下结论:

  这两个完全一样的梯形,无论是直角梯形、等腰梯形、还是一般的梯形,都可以拼成一个平行四边形。

  这个平行四边形的.底等于梯形的上底+下底

  这个平行四边形的高等于梯形的高

  因为每个梯形的面积等于拼成的平行四边形面积的一半,所以梯形的面积=(上底+下底)×高÷2

  (4)字母表示三角形面积公式:S=(a+b)h÷2

  1、完成试一试:

  2、完成练一练:

  (1)学生计算后提问:用上、下底的和乘高后,为什么还要除以2?

  (2)结合直观的图形或教具演示,简单

梯形面积的教案15

  教学内容:教材P95~96例3及练习二十一第2、3、4题。

  教学目标:

  知识与技能:在平行四边形、三角形的面积计算公式推导的基础上,引导学生采用合作探究的形式,概括出梯形面积计算公式。正确、较熟练地运用公式计算梯形面积,并能解决一些生活中的实际问题,提高学生发现问题、分析问题、解决问题的能力。

  过程与方法:通过自主探究,小组合作,在操作、观察、比较中,培养学生的想象力、思考力,进一步发展学生的空间观念。

  情感、态度与价值观:渗透数学迁移、转化思想,让学生感受数学与生活的紧密联系.提高学生学习数学的兴趣。

  教学重点:理解并掌握梯形的面积公式.会计算梯形的面积。

  教学难点:自主探究梯形的面积公式。

  教学方法:动手实践、自主探索、合作交流

  教学准备:师:多媒体、完全一样的梯形若干个。生:剪刀、两个完全一样的梯形纸片(如等腰梯形、直角梯形等)、练习本。

  教学过程

  课前预习案

  判断

  (1)两个完全相同的梯形可以拼成一个平行四边形,拼成的平行四边形的面积是梯形的2倍。 ( )

  (2)梯形的面积比平行四边形的面积小。 ( )

  (3)一个面积是80平方厘米的平行四边形,分割成两个完全一样的梯形,每个梯形的面积是40平方厘米。 ( )

  一、谈话导入

  师:前面我们学习了三角形和平行四边形的面积公式,在公式的推导过程中运用了变形的思想。这一节我们一起来学习梯形的面积。

  二、创设情境,探索新知

  1、计算面积(单位厘米)

  (第1题图)

  (第2题图)

  2、 计算面积(单位厘米)

  怎么计算呢?能不能运用转换的思想,变成已经学过的图形。 已学过的图形,三角形,平行四边形,长方形。)

  讨论梯形面积推导过程。转化为两个三角形。从这里可以看出两个三角形的高与梯形的高都、

  两个一样的梯形拼成一个平行四边形。平行四边形的底为梯形的(上底+下底),高为梯形的高。那么梯形的面积=(上底+下底)×高÷2剪切拼接成长方形,长为梯形的中位线,宽为梯形的高。那么:梯形的面积=(上底+下底)×高÷2

  3、如果用 S 表示梯形的面积,梯形面积的计算公式可以写成:S=(a+b)h÷2

  三、学以致用

  1.出示教材第96页例3。

  教师:什么是横截面?

  请学生独立解决,全班核对答案。

  教师:因为我们刚刚开始学梯形的面积公式,对公式不熟,所以计算时可以先写上公式,再列算式。等以后熟练了,公式可以省略。

  2.出示教材第96页“做一做”。

  教师:这题特别要看清楚问题,问的是“它们的面积分别是多少”,所以问的是“左边梯形的面积是多少”和“右边梯形的面积是多少”,千万不要把“分别”看成“共”,变成求整个大梯形的面积。

  3.下面图中哪几个梯形的面积是相等的?为什么?

  小结:这几个梯形的高相等,所以判断哪几个梯形的面积相等,只要看哪几个梯形的上底与下底的和相等就可以了。

  四、课堂检测

  1.填空。

  (1)两个完全一样的梯形能拼成一个( ),拼成的平行四边形的底由梯形的上底和下底的( )组成,所以梯形的面积=( ),用字母表示是( )。

  (3)1680平方厘米=( )平方分米 0.95平方米=( )平方分米

  2.判断。

  (1)任意一个平行四边形都可以分成两个大小和形状都相同的梯形。( )

  (2)平行四边形的面积大于梯形的`面积。 ( )

  (3)两个面积相等的梯形可以拼成一个平行四边形。( )

  (4)梯形的面积等于梯形的上底加下底的和乘以高。( )

  3完成教材第97页第1题到第5题。

  (1)完成教材第96页“做一做”。先说一说这是一个什么图形,并对该图进行分析。

  学生可以把它看成一个大梯形,梯形的上底是(40+45) cm,下底是(71+65) cm,高是40cm,也可以看成两个直角梯形,其中一个梯形的上底是40cm,下底是7lcm,另一个梯形的上底是45cm,下底是65cm,高都是40cm,算出两个梯形的面积再加起来。

  (2)完成教材第97页“练习二十一”第3题。

  本题需要先测量计算所需条件的长度,再利用梯形面积计算公式求面积。

  (3)完成教材第97页“练习二十一”第4题。先让学生观察飞机模型的机翼是什么形状,(是两个完全相同的梯形)再让学生说一说怎样求机翼的面积。求机翼的面积,可以先求出一个梯形的面积,再乘2;也可以根据梯形面积公式的推导经验,设想把两个梯形拼成一个底长lOOmm+48mm,高250mm的平行四边形,求出它的面积。

  五、课堂小结

  师:这节课你学会了什么?有哪些收获?

  引导总结:

  1.在推导梯形的面积公式时,可以把梯形转化成我们学过的图形来推导。

  2.梯形的面积=(上底+下底)×高÷2。

  3.用字母表示:S=(a+b)×h÷2。

  布置作业:

  板书设计:

  梯形的面积

  梯形的面积=(上底+下底)×高÷2

  用字母表示:S=(a+b)×h÷2

  例3:

  S=(a+b)h÷2

  =(36+120)×135÷2

  =156×135÷2

  =10530 (m2)

【梯形面积的教案】相关文章:

梯形面积的计算教案04-12

【实用】梯形面积的计算教案15篇05-14

梯形的面积教学反思03-27

梯形的面积教学设计06-08

《梯形的面积》教学反思08-23

《梯形面积》 教学反思08-31

《梯形的面积》教学反思15篇03-17

五年级数学教案梯形面积的计算04-08

认识梯形教案01-25

四年级数学教案:梯形的面积计算04-04