当前位置:空空范文网>教育范文>教学设计>《平行四边形的面积》教学设计

《平行四边形的面积》教学设计

时间:2024-05-20 08:30:12 教学设计 我要投稿

《平行四边形的面积》教学设计

  作为一名老师,常常需要准备教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。教学设计要怎么写呢?以下是小编收集整理的《平行四边形的面积》教学设计,仅供参考,希望能够帮助到大家。

《平行四边形的面积》教学设计

《平行四边形的面积》教学设计1

  教材分析:

  本节课是在学生对平行四边形有了初步认识,学习了长方形、正方形面积计算的基础上进行教学的。平行四边形面积公式的推导方法的掌握,对后面三角形、梯形面积公式的学习具有重要的作用。几何知识的初步认识贯穿在整个小学数学教学中,是按由易到难的顺序呈现的。本课时内容在教科书的第96至97页,包括剪拼图形、总结公式、试一试、练一练和问题讨论五个环节,这部分知识的学习、运用会为学生学习后面的三角形,梯形等平面图形的面积计算奠定良好的基础。由此可见,本节课是促进学生空间观念发展,扎实其几何知识学习的重要环节。

  学情分析:

  五年级的学生已经具有了自主学习、迁移推理的能力,在学平行四边形面积计算之前,学生已经了解了平行四边形各部分的名称及特点,掌握了长方形、正方形面积的计算公式。

  设计理念:

  根据教学内容,因材施教制定了教学思路:创设情境——指导探究——发现规律——实践应用。人人参与教学活动,动脑、动手、动口,达到理解和运用公式的目的。在解决问题中真切感受到数学知识来源于生活,又服务于生活。

  教学目标:

  1、使学生通过探索理解和掌握平行四边形的面积公式,会计算平行四边形的面积。

  2、通过操作,观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。

  3、培养学生学习数学的兴趣及积极参与、团结协作的精神。

  教学重点:

  探究平行四边形的面积计算公式,会计算平行四边形的面积。

  教学难点:

  平行四边形面积公式的推导过程。

  教具准备:

  课件、方格纸、剪刀、长方形、平行四边形。

  教学过程:

  一、情景引入,激趣导课

  1、情景引入(出示课件)

  2、从平行四边形的花坛中引出“平行四边形的面积”。

  师:这两个花坛哪一个大?(生自由说)

  我们已经知道长方形的面积是怎样算,平行四边形的面积又怎样算呢?

  3、揭题:平行四边形的面积(板书课题)

  二、动手操作,探究新知

  1、联想、猜测。(用数格子的方法)

  长方形的面积与它的长和宽有关系,请大家猜测一下平行四边形的面积和谁有关系,有什么关系?

  2、归纳意见,提出验证。(用剪、拼的方法)

  能不能把平行四边形转化成长方形来计算它的面积呢?请同学们想一想,同桌交流,并动手用学具试一试。

  ⑴小组合作,动手操作。

  ⑵演示操作过程。(课件演示)

  同学们真聪明,在操作过程中运用了一种重要的数学方法“转化”,都是把一个平行四边形转化成了一个长方形,“转化”是一种重要的数学思想方法,在以后学习中会经常用到。

  ⑶观察几种不同的转化方法,它们有什么共同的地方?为什么沿高剪开?

  长方形有四个直角,只有沿高剪开,拼时才能出现直角。

  ⑷讨论:拼出的长方形和原来的平行四边形相比,你发现了什么?以下面的讨论题进行思考交流。

  ①拼出的长方形和原来的平行四边形比,什么变了,什么没变?

  ②拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

  ③你能根据长方形面积的计算公式推导出平行四边形面积的计算公式吗?

  ⑸讨论推导出平行四边形面积公式:

  长方形的面积=长×宽

  平行四边形的面积=底×高

  3、演示过程,强化结果。

  大家刚才在操作中沿平行四边形任意几条高剪开、平移、拼都把一个平行四边形转化成一个长方形。请同学们再观察一遍(多媒体演示),一个平行四边形有无数条高,沿任意一条高剪开、平移、拼都可以把一个平行四边形转化成一个长方形,这个长方形的面积与原来平行四边形面积相等,这个长方形的长等于这个平行四边形的底,这个长方形的宽等于这个平行四边形的高,因为长方形的面积等于长乘宽,所以平行四边形面积等于底乘高。(刚才有同学猜想平行四边形的面积是两邻边的积,是不是这样呢?这里有一个平行四边形框架,请你拉一拉,发现了什么?邻边长度没变,面积变了,所以平行四边形面积不等于两邻边的积)

  从而也验证了大家前面猜想的底乘高等于平行四边形的面积是正确的,在学习中我们采用了先猜想,再转化,最后验证等学习方法,这些方法在学习中我们经常用到。

  4、用字母表示公式。

  师:如果用s表示平行四边形面积,a表示它的'底,h表示它的高,那么平行四边形的面积可以用字母什么表示?字母中间乘号可以省略。S=ah

  师:要求平行四边形的面积,必须知道什么?

  (通过大家共同的努力,推导出了平行四边形面积公式,下面让我们走进阳光小区,去解决一些实际问题。)

  5、利用公式解决例1。

  例1:一块平行四边形花坛的底是6米,高是4米,它的面积是多少?

  两人板演,其余做在练习本上。S=ah=6×4=24(m2),6×4=24(m2)

  [评析:根据刚才对平行四边形面积计算方法的初步感知,先让学生猜测平行四边形的面积怎样算,然后把平行四边形转化成长方形,利用长方形面积推导出平行四边形的面积,从而验证了学生的猜测是正确的。通过教学,向学生渗透了猜测—转化—验证等数学思想方法,为以后学习三角形和梯形的面积做了充分准备。]

  三、反馈练习,发展思维。

  课件练习

  四、课堂总结

  今天我们学习了平行四边形面积的计算,通过学习你又有哪些新的收获呢?

  板书设计:

  平行四边形的面积

  长方形的面积=长×宽

  平行四边形的面积=底×高

  S=ah

《平行四边形的面积》教学设计2

  一、教学目标:

  1、知识目标:经历动手操作、讨论、归纳等探讨平行四边形面积公式,并能用字母表示,会用公式计算平行四边形面积。

  2、能力目标:在剪一剪、拼一拼中开展空间观念;在想一想、看一看中初步感知“转化〞的数学思想和方法。

  3、过程与方法:通过观察、操作、测量、思考、讨论交流、小组合作等数学活动,体会转化等数学方法,开展推理能力。

  4、情感态度与价值观:使学生在探索平行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感。

  二、教学重点、难点及关键点剖析:

  1、重点:平行四边形面积公式的推导及应用。

  2、难点:理解平行四边形面积计算公式的推导过程。

  三、教具、学具准备:

  平行四边形纸片、剪刀及电脑课件、

  四、教学过程:

  一、创设情境,导入新课

  猪八戒和孙悟空西天取经回来后,就回到高老庄种起地来,可是孙悟空的地在猪八戒家的旁边,猪八戒的地却在孙悟空家的旁边,它们都觉得干活时很不方便。于是它们商量把地换一下。可是孙悟空的菜地是长方形的,猪八戒的菜地是平行四边形的,它们都在想这样交换公平吗?同学们,你们说这样交换公平吗?我们怎样才能知道这样交换是否公平呢?

  生:算出这两块地的面积,比比就知道了。

  师:那长方形的面积怎么算呢?

  生:长方形的面积=长某宽

  师:平行四边形的面积怎么算呢?

  生摇摇头。

  师:那你们想学吗?这节课我们就一起来研究平行四边形的面积。〔板书课题〕

  齐读学习目标:

  1、通过操作,能推导出平行四边形的面积计算公式。

  2、会运用平行四边形的面积计算公式解决实际问题。

  二、自主学习

  在下面的方格纸上数一数,然后填写下表。〔一个方格代表1m2,不满一格的都按半格计算。〕

  小组讨论:〔1〕仔细观察、比拟表格中的数据,你发现了

  〔2〕猜测:平行四边形的面积=_________________________

  三、动手操作,验证猜测

  〔1〕小组讨论:能不能将平行四边形转化成长方形来计算?该怎样转化?(把平行四边形转化成长方形或正方形,必需沿着平行四边形的高剪)

  〔2〕以小组为单位进行剪拼。

  〔3〕指学生演示平行四边形转化成长方形的过程,并观看电脑演示过程。

  〔4〕讨论:

  A、平行四边形转化成长方形后面积变了吗?为什么?〔没有,因为它的大小没变〕,〔物体的外表或封闭图形的大小,叫做它们的面积〕

  B、转化成的长方形的长相当于原平行四边形的(),转化成的.长方形的相当于原平行四边形的()。

  〔6〕交流汇报

  板书:长方形的面积=长某宽

  ↓ ↓ ↓

  平行四边形的面积=底某高

  师:如果用字母S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成S=a某h,也可以写成S=ah或S=ah〔师板书〕

  四、当堂检测

  1、师:通过同学们的努力,我们已经推导出了平行四边形面积的计算公式,那现在你们会利用公式解决问题了吗?

  出例如1平行四边形花坛的底是6m,高是4m,它的面积是多少?

  学生独立完成,并展示学生作业。

  2、计算下面平行四边形面积,列式正确的选项是:〔〕

  A:8某3B:8某6C:4某6D:4某3

  通过做此题,你想提醒大家注意什么?

  3、你能想方法求出下面这个平行四边形的面积吗?

  五、拓展提升

  下面图中两个平行四边形的面积相等吗?它们的面积各是多少?

  通过做此题,你发现了什么?

  六、课堂小结

  说说本节课,你收获了什么?

  七、板书设计:

  平行四边形的面积

  长方形的面积=长某宽

  ↓ ↓ ↓

  平行四边形的面积=底某高

  S=a某h=ah =ah

《平行四边形的面积》教学设计3

  教学目标:

  1、使学生通过探索、理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

  2、使学生通过观察、操作、比较等活动,初步认识转化的方法,培养学生的观察、分析、概推导能力,发展学生的空间观念。

  3、培养学生的合作意识和探究精神。

  教学重点:

  理解公式并会计算平行四边形的面积。

  教学难点:

  推导平行四边形的面积计算公式。

  教具准备:

  每人准备一个平行四边形纸片和一把剪刀,多媒体课件。

  教学过程:

  一、导入(媒体出示:)

  1、认识图形。

  2、口算长方形的面积。

  3、回顾平行四边形的特征。

  4、观察主题情景图:明明和芳芳争论场景:一块长方形花坛,一块平行四边形花坛。哪一块大呢?板书课题:平行四边形的面积

  二、自主学习

  1、学生用数方格的方法数一数,并把结果记载到80页的.表格中。

  2、思考:从表格中的数据,你发现了什么?(它们的面积相等)为什么会出现这样的结果?(因为通过数出的数据显示:长方形的长和宽分别和平行四边形的底和高相等。)

  3、思考:如果不数方格,能不能计算出平行四边形的面积呢?能不能把平行四边形转化成我们已经学习过的图形来求面积?(学生交流找寻方法:可以用剪、拼、的方法把平行四边形转化成别的图形)

  4、动手操作:学生可以独立操作,也可以同桌相互合作,自主探究平行四边形面积公式的由来,教师巡视。

  5、提问:通过刚才的操作,你发现了什么?学生汇报交流:平行四边形的底和拼得的长方形的长相等,底边上对应的高和长方形的宽相等,所以平行四边形的面积也就等于拼得的长方形的面积。(教师根据学生回答媒体演示过程)

  板书:

  长方形的面积=长×宽

  平行四边形的面积=底×高

  6、学习用字母表示公式:我们用S表示平行四边形的面积,a表示它的底,h表示它的高,计算公式用字母如何表示?(根据学生回答板书:S=a×h)

  7、思考:要求平行四边形的面积,必须要知道哪些条件?(底和高)

  教师强调:平行四边形有无数条高,底乘的高一定要是对应边上的高才是它的面积。

  三、巩固提高

  1、反馈:(媒体展示)口算平行四边形的面积,点学生回答。集体订正时强调:书写格式和单位。重点提醒:不对应底和高平行四边形面积。

  2、作业:练习十五第1题,第2题。

  3、拓展:(媒体展示)

  (1)下面哪个平行四边形的面积大呢?为什么?

  (2)一个长方形拉成一个平行四边形后,有哪些变化?

  四、课堂小结

  本节课你学会了什么?平行四边形的面积公式是怎么推导来的?要求平行四边形的面积,必须知道那些条件?

《平行四边形的面积》教学设计4

  教学内容:

  人教版义务教育课程标准实验教科书数学五年级上册第五单元《平行四边形的面积》p86-88

  教学目标:

  1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;

  2、通过操作、观察、比较,让学生经历平行四边形面积公式的推导过程,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

  3、通过数学活动,让学生感受数学学习的乐趣,体会平行四边形面积计算在生活中的作用。

  教学重点:

  掌握平行四边的面积计算公式,并能正确运用。

  教学难点:

  把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。

  教具准备:

  课件、平行四边形纸片、剪刀、直尺、三角板等。

  学具准备:

  2块平行四边形彩色纸片、三角板、直尺、剪刀

  教学过程:

  师:出示平行四边形,问:这是什么图形?它有什么特征?生指出它的底和高。你能画出它一条底边上的高吗?(在平行四边形图片上画一画,并标出底和高。)

  一、情境创设,揭示课题

  1、创设故事情境

  同学们,喜欢喜羊羊的动画片吗?据说羊村的牧草越来越少,村长决定把草地分给各个羊自已管理和食用。懒羊羊分到的是一块长方形地,喜羊羊分到的是一块平行四边形地,它们认为自己的草地更少,争了起来。同学们想帮它们解决这个问题吗?你们准备怎样解决呢?

  2、复习旧知,揭示课题

  (1)、复习长方形的面积计算方法,口算长方形草地的面积。(板书长方形面积公式:长方形面积=长×宽)

  (2)、师:你能帮它们求出这块平行四边形草地的面积吗?这节课,我们一起来研究平行四边形面积的计算方法。

  (板书课题:平行四边形的面积)

  二、自主探究,操作交流

  1、大胆猜想

  师:在学习推导长方形的面积公式时,我们最初使用了什么的方法?(数方格)今天学习计算平行四边形的面积,能不能也用这个方法?

  师:请同学们观看大屏幕,用数方格的方法计算平行四边形的面积,不满一格的,都按半格计算。(生看大屏幕,认真数方格)你有什么发现?

  (两个图形的面积相等,都是18平方米……) (知识点)

  师:同学们继续观察这两个图形,并完成的表格。完成后想一想,我们知道长方形的面积和它的长和宽有关,那么我们猜想一下,平行四边形的面积可能与它的什么有关?

  (师出示一个平行四边形纸板,生看图猜测。)

  生汇报猜测结果,师随机板书。

  师:如果有很大很大一块草地,需要求它的'面积,用数方格的方法方便吗?再则刚才数方格时,我们都是把不满一格的当半格去数,这样也不一定准确,还有没有更好的方法呢?

  2、操作验证

  提示:想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看。

  学生动手剪拼(可以小组合作),并向周围同学说一说是怎样转化的.

  (师参与到小组活动中,巡视指导。)

  3、汇报交流

  师:你是怎样做的呢?谁愿意上来演示并说一说呢?

  (学生有的拼成三角形,有的拼成梯形,有的拼成长方形,还有的拼成平行四边形……)

  师:同学们插上了想像的翅膀,把平行四边形转化成各种各样的已学过的图形,你们真棒。

  师:请同学们观察一下,哪种图形的面积我们懂得计算呢?

  生:长方形。

  师:怎样剪才能拼成长方形呢?

  师:请大家拿起另一个平行四边形纸片,动手把它转化成长方形吧!

  生再次操作。

  4、发现方法

  师:我们已经成功地把平行四边形转化成长方形。请结合刚才的实验过程,动动脑筋想一想这些问题。小组讨论交流。

  (电脑显示思考题)

  小组讨论交流。

  (1)平行四边形转化成长方形,面积变了吗?

  (2)方形后的长和宽分别与平行四边形的底和高有什么关系?

  (3)能不能根据这些关系,总结出求平行四边形的面积的方法呢?

  实物图片展示拼剪过程同时回答上面的讨论题。

  学生一边说教师一边板书:长方形面积=长×宽

  平行四边形面积=底×高 (知识点)(能力点)

  5、回顾公式推导过程

  (1)结合课件演示各部分间的相等关系。

  (2)指名说说平行四边形面积公式是怎么样推导出来的?

  6、学习用字母表示公式。

  师:如果平行四边形式形面积用字母s表示,底用a高用h表示,你能用字母表示平行四边形面积公式吗?(指名说说,师板书:s=ah)

  7、记忆公式

  闭上眼睛记记公式。

  如果要求平行四边形的面积,必需要知道哪些条件呢?

  8、尝试运用

  师:我们发现的这个平行四边形面积的计算公式是不是对任何一个平行四边形都适用呢?请同学们用面积公式帮喜羊羊算一算平行四边形草地的面积,看计算结果与数方格方法求得的面积结果是不是一样?

  (出示喜羊羊的草地图)(说明格式要求)学生独立完成。

  三、深化运用,加深理解

  通过计算,它们两人的草地面积相等吗?(相等)它们终于消除了误会,破涕为笑,齐声说:“计算平行四边形面积原来这么简单,我们也会了。”

  1、算出下列平行四边形的面积 (考查点)

  课件出示图形

  (羊村长看到小羊们的进步很高兴,说:“再出几个选择题考考你们吧。”)

  2、选一选。(题目见课件) (考查点、能力点)

  (强调:平行四边形的面积=底×底边对应的高)

  你有什么结论?(等底等高的两个平行四边形面积相等。)

  3、(羊村长说:我老了,你们能帮我算需要多少棵白菜秧苗吗?)

  (考查点、能力点)

  有一块地近似平行四边形,底是15米,高 是10米。这块地的面积约是多少平方米?如果每平方米种8棵白菜,这块地能种多少棵白菜?

  四、解决问题,应用拓展

  1、小小设计师:

  羊村小学教学楼前要建造一个面积是24平方米的平行四边形花坛,请你帮它们设计一下(要求它的底和高均为整米数),可以有几种方案?

  2、喜羊羊准备在草地的四周围上篱笆,你能帮它算算篱笆长多少米吗?

  五、总结全课,提高认识

  这节课我们学习了什么知识?是怎么来学会这些知识的?

《平行四边形的面积》教学设计5

  教学内容:

  北师大版五年级数学上册第四单元(P53——P55)

  教材分析:

  本节课主要探索并掌握平行四边形面积计算公式,如何把平行四边形转化成长方形是本节课教学的重要内容。掌握这个过程和方法,将为学生探索三角形、梯形等面积的计算打下基础。教材从实际出发,设计了四个递进的问题。第一个问题是猜想如何求平行四边形的面积;第二个问题是借助方格纸验证猜想是否正确;第三个问题是运用割补法把平行四边形转化为长方形;第四个问题是探究平行四边形面积的计算公式。

  学情分析:

  二年级同学们已经学过如何计算长方形的面积,在四年级同学们已经认识了平行四边形,在上一节课中又认识了平等四边形的底和高,并能在平行四边形中正确画出与指定底边相对应的高,知道了平形四边形有无数条高。本节课则通过动手操作探究,推导出平行四边形面积计算公室,并能运用平行四边形面积公式解决相关问题。

  教学目标:

  经历平等四边形面积猜想与验证的探究活动,体验数方格及割补法在探究中的应用,获得成功探索问题的体验。

  掌握平行四边形面积计算公式,并能正确计算平形四边形的面积。

  能运用平形四边形的面积计算公式解决相关的问题。

  教学重点:

  通过操作活动掌握平行四边形的面积的计算方法。

  教学难点:

  经历推导平行四边形面积公式的过程。

  教法学法:

  实验探究、推理验证、小组合作学习

  教具准备:

  课件、剪刀、准备平行四边形若干。

  教学过程:

  一、开门见山,导入新课

  今天我们一起来探索平形四边形的面积。(板书课题)

  二、新知探究

  1.分析平行四边形给定的3个数据所表示的意义。

  2.如何求这个平行四边形的面积,说一说你的想法和理由。

  猜想:

  (1)借助长方面的面积计算方法,用相邻的两边相乘来计算的。

  (2)提出来数方格的方法来试一试。看选择哪两个数来计算比较好。

  3.借助方格纸数一数,比一比

  学生动手,可以用长为6厘米,宽为5厘米的长方形摆一摆,也可以用主题图中等比例缩放的平行四边形放在方格纸上数一数。

  要求:

  (1)独立完成

  (2)小组内交流一下你的想法。

  (3)方法展示。

  (4)猜想结果:平行四边形的面积等于底乘高。

  这只是我们的猜想,那如何来验证我们的猜想是否成立呢?

  4.平形四边形如何转化为长方形,验证猜想。

  (提示:你也可以用剪刀将图形剪一剪。看能不能转化成我们已经学过的知识来解决这个问题)

  (1)学生经且为单位,动手操作,体会平行四边形转化为长方形的过程。

  (2)是不是沿任意一条高剪开都可以拼成长方形呢?

  动手操作,验证猜想。

  (3)将转化后的长方形与原来的平等四边形比一比,它们之间什么变了,什么没变?

  生:它们的形状变了,由平形四边形转化成了长方形。周长变小了,面积没有变。

  (4)再仔细观察,你还有什么发现?

  生:转化后的长方形的长相当与原平行四边形的底,转化后的长方形的宽相当与原平等四边形中与底所对应的高。因为长方形的面积=长×宽,所以平行四边形的`面积=底×高。

  5.怎样求平形四边形的面积?想一想,与同伴交流

  (1)拿着你们组刚才转化的图形再摆一摆,说一说整个操作过程。说一说我们怎样求平行四边形的面积?

  (2)你会填吗?

  A、把一个平行四边形转化成一个长方形,它的面积与原来平形四边形的面积( ),长方形的长相当于平行四边形的( ),长方形的宽相当于平行四边形的( ),因为长方形的周长=( ),所以平行四边表的面积=( )。

  B、如果用S表示平行四边形的面积,用a和h分别代表平行四边形的底和高,那么平等四边形的面积公式可以写成:S=( )。

  6.计算主题图中的平形四边形的面积。

  三、实践应用,巩固与提高。

  1.计算下列图形的面积(抢答)

  (1)底为4厘米,高为2厘米。

  (2)底为5分米,高为9分米

  (3)底为3米,高为7米

  2.判断,并说明理由。

  (1)两个平行四边形的高相等,它们的面积就相等( )

  (2)平行四边形底越长,它的面积就越大( )

  3.计算下列图形的面积。(单位:厘米)

  四、课堂小结。

  1.你今天学习了什么?有何收获?

  2.在计算平行四边形的面积时,应注意什么?

  板书设计:

  探索活动:平行四边形的面积

  长方形的面积=长×宽

  平行四边形的面积=底×高

  S=ah

《平行四边形的面积》教学设计6

  教材简析:

  《平行四边形的面积计算》九年义务教育北师大版小学数学五年级上册平行四边形的面积、。本单元共包括平行四边形的面积、三角形的面积、梯形的面积。《平行四边形的面积计算》是在学生学习了长方形和正方形面积计算公式之后,有助于学生利用“转化”的思想将平行四边形转化为长方形或正方形,进而推导出面积的计算方法。

  教学目标:

  1、知识目标:通过学生自主探索、动手实践推导出平行四边形面积计算公式,能正确求平行四边形的面积。

  2、能力目标:通过教学活动,向学生渗透“转化”的思想,培养学生的动手操作能力、迁移能力,发展学生的空间观念,同时培养学生合作,交流的意识。

  3、情感与价值观:使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的价值。

  教学重难点:

  理解平行四边形面积的推导过程,并能运用公式解决实际问题。

  教具准备:

  多媒体课件

  学具准备:

  每人准备一张平行四边卡纸,一把剪刀

  教学过程:

  一、多媒体出示复习题:计算平行四边的高和底。

  二、新课

  (一)情境导入:

  师:同学们,有个施工队的设计人员这样设计了两个花坛(多媒体出示设计图:一个长方形,一个平行四边形)你会求它们的面积吗?你知道哪一个花坛的面积大吗?

  生:我会求长方形的面积,平行四边形的面积没有学

  师:这一节课我们就来一起探索平等四边形的面积计算公式。(板书课题:平行四边的面积)

  (二)探索新知:

  1、用数方格的方法探索平行四边形的面积。

  A、师:你能用什么方法求平行四边形的面积

  生:数方格

  师:我们可以用数方格的方法试一试

  (同学们拿出材料)

  师提示:同学们在数方格时,1个方格代表1平方厘米,不满一格的按半格计算。

  让学生在情境中学习数学,使学生认识到生活中有许多数学问题。

  引导学生自己发现问题产生解决问题的强烈意识,变学生的被动听老师讲解为学生的主动探索。

  给学生提出明确的要求,教给他们正确的方法

  B、汇报数的结果

  C、小结

  用数方格的方法可以算出平行四边形的面积,但不精确,而且较大的面积也不好算,还有更好的方法吗?

  2、探究活动:

  a、师:既然同学们都意识到到平行四边形的面积与长方形有关,那我们能否把平行四边形转化成一个长方形来计算它的面积?

  给学生思考的时间,让学生观察手中的平行四边形,思考如何来操作。

  B、让学生动手实践,老师注意巡视和个别指导。

  c、让学生互相交流自己的.方法

  学生在一般情况下可能会有以下两种割补的方法,都应给予肯定。

  有些同学通过割补拼出的图形可能不是长方形而是正方形,这时应通过长方形和正方形的关系来加以说明。

  d、引导学生小组讨论

  师:观察拼出的长方形和原来的平行四边形,你发现了什么?(同时出示问题引导学生思考交流)

  思考题:

  ①拼出的长方形和原来的平行四边形相比,面积变了没有?

  ②拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

  ③你能根据长方形面积的计算公式推导出平行四边形的面积计算公式吗?

  鼓励学生大胆猜测,想像,为下一步探索提供思路

  对学生的大胆猜测给以鼓励,创设民主和谐的学习氛围。

  给学生探索的素材,探索的空间,培养学生勇于探索,勤于思索的精神。

  e、让学生叙述自己的推导过程,全班交流

  f、利用多媒体课件演示,平行四边形割、移、补的过程,学生注意观察。

  老师边演示边推导:我们把一个平行四边形转化为一个长方形,它的面积与原来的平行四边形面积相等,这个平行四边形的底和长方形的长相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。

  板书:平行四边形面积=底×高

  长方形面积=长×宽

  3、平行四边形面积计算公式的应用

  a、师:如果用字母S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形面积的计算公式可以怎样表示呢?

  让每个学生都在练习本上写一写

  生回答:S=ah(同时在黑板上标示出来)

  b、解决问题:

  多媒体出示“做一做”:学生自己读题,然后尝试解答,指一名学生起来说一说自己的是如何解答的。

  三、拓展练习:

  1、逐一完成多媒体课件作业。

  2、完成书中的练习。

  四、全课总结:

  师:本节课你学会了什么?

  你收获了什么?

  板书设计

  平行四边形面积

  1、数方格法

  2、转化法平行四边形平移

  长方形=长×宽

  平行四边形面积=底×高

《平行四边形的面积》教学设计7

  教学内容:

  人教版数学五年级上册第6单元第87-88页。

  教材分析:

  《平行四边形的面积》的教学是在学生初步掌握了平行四边形的特征,长方形、正方形的面积计算方法,以及初步认识了图形平移、旋转的基础上进行的。这部分内容的知识,不仅有利于发展学生的分析能力及转换划归思想,促进学生的空间观念发展,而且也为学习三角形面积、梯形面积等打下良好的基础。

  学情分析:

  在学习《平行四边形的面积》之前,学生已初步掌握了平行四边形的特征,长方形、正方形的面积计算方法,以及初步认识了图形平移、旋转,学生具备了一定的动手操作能力。五年级学生正处在形象思维和逻辑思维过渡时期。他们有了一定空间观念和逻辑思维能力。但对于理解图形面积计算的公式推导和描述推导的过程还是有难度的。针对难点因地制宜,结合学生自身的实际情况,动手实践、直观演示法、合作交流;引导学生进行问题探索,通过教学环境的情感渲染,利用情境引出问题,并通过猜想、验证、推导出平行四边形的面积计算公式,使学生在理解的过程中主动的学习,重结果的同时更重过程性的学习,在学习过程中渗透转化的思想,激发学生的创新意识。

  教学目标:

  1.知识与技能:在具体情境中,理解并掌握平行四边形的面积计算公式,能正确计算,并能解决简单的实际问题。

  2.过程与方法:经历数一数,剪一剪,拼一拼的探索过程,培养观察,分析能力,发展空间观念,感悟转化(划归)的数学思想,积累相关活动经验。

  3.情感态度与价值观:感受数学与生活的联系,体会数学的应用价值。

  教学重点,难点:

  教学重点:理解并掌握平行四边形的面积计算公式

  教学难点:理解并掌握平行四边形的面积计算公式,推导出平行四边形的面积计算公式。

  教具准备:

  (1)一些平行四边形卡片

  (2)磁铁

  (3)剪刀

  (4)课件

  教学过程:

  提前将洋葱微课发至家长群,让孩子提前学习,明确学习内容。

  一、创设情境,导入新知

  创设情景:(出示多边形面积主图)从图中你发现了哪些图形?

  提出问题:你会计算它们的面积吗?正方形面积?长方形面积?

  追问:在生活中什么时候要用到计算面积呢?

  预设:比较面积大小、贴瓷砖……

  师:老师也遇到了同样的比大小的问题,请看,老师把花坛请到了这里(出示87页主图)这两个花坛哪一个大呢?

  【设计意图】由一张生活中常见的多边形面积主图来展开,从学生已有知识生活经验来引导学生发现问题,提出问题、分析问题,最后解决问题,感受数学与生活的密切联系,知道生活中什么时候需要计算面积等,引导学生体会数学的应用价值。最后通过比较哪个花坛大来引出今天要学习探索的平行四边形的面积。

  二、探索新知

  (一)借助方格,初步探究。

  猜想:

  预设1:长方形花坛面积大

  预设2:平行四边形花坛大。

  预设3:不确定,要比两个花坛的面积,可是我们不会求平行四边形的面积

  引入课题:我们今天一起来研究——平行四边形的面积(板书)

  1、回忆一下,我们是用什么方法得出长方形的面积计算公式的?

  预设:数方格

  验证:

  2、在方格上数一数,然后填写下表(一个方格代表1m^2,不满一格的都按半格计算。)拿出练习本,写在练习本上,不用画表格。

  3、提问:谁来数一数,告诉大家你是怎么数的?

  4、追问:有没有什么方法能帮助我们数的快一点呢?

  预设:沿平行四边形的高剪一块,拼到另一边。

  5、这种“一剪,一拼”的方法,数学上称为“割补法”。

  (二)渗透转化,进一步探究。

  1、不数方格,能不能计算平行四边形的面积?

  预设:转化成学过的长方形。

  2、渗透思想:他提到了一个数学学习过程中常用到的一种思想方法“转化”思想。把新知识转化成旧知识。

  3小结:刚才我们是用数格子的方法知道的,如果没有方格……(引导学生)

  (三)观察、猜想、验证深入探究

  1、回忆一下,长方形的面积计算公式是?(板书:长方形面积=长×宽)

  长方形面积和谁有关?

  2、提问:长、宽中任意一个变化会导致面积变化吗?

  由此,你们猜测一下平行四边形的面积可能会和谁有关?

  预设1:邻边(如果很多学生说与邻边有关就分组讨论)

  预设2:底和高

  3、演示:拉动它会有什么变化?什么变?什么不变?(拿着一个可以变动的平行四边形)面积变小了,邻边___?底___?高___?周长___?

  4、小结:可见平行四边形的面积和……有关,那么我们能不能用转化的的方法推导出平行四边形的面积?

  推理:

  光说没有说服力,拿出练习本和事先准备好的平行四边形卡片,把推导过程体现出来。把平行四边形转化成学过的'图形。

  学生动手(教师巡视)

  (投影展示)

  提问:你是怎么把平行四边形转化成长方形的?(学生上台展示)

  预设:沿高剪开,把三角形向右平移,再拼成长方形。

  师:条理清晰,通过“一剪,一拼”把平行四边形转化成长方形,这种方法叫?

  对了,割补法,利用割补法转化成长方形就能计算面积了。

  5、(课件动画演示)看看如何将平行四边形转化成长方形。

  (四)合作交流,推导出平行四边形面积

  1、原来的平行四边形和转化后的长方形,它们之间有什么关系?平行四边形的面积怎么求?

  预设:

  2、汇报

  平行四边形的底和长方形的()相等。(板书)底→长

  平行四边形的()和长方形的()相等。(板书)高→宽

  这两个图形的面积()。(板书)平行四边形面积=长方形面积

  3、怎样计算平行四边形的面积?

  预设:平行四边形面积=底×高(板书×)

  (五)渗透符号意识,公式符号化

  1、a表示什么?h呢?

  如果用大写字母S表示面积,用字母a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成?

  预设:S=ah(板书)

  2、要求平行四边形的面积要知道什么?

  3小结:到这里的学习,你们知道了什么?

  【设计意图】本环节充分体现了新知识转化成旧知识的“转化”思想。第一通过引导学生回忆推导长方形面积的方法来计算平行四边形的面积,即借助方格,初步探索平行四边形的面积。,经历剪一剪、拼一拼的探索过程,渗透“割补法”。第二进一步探索,在没有方格的情况下,引导学生“转化”,将平行四边形转化成长方形,新知转化成旧知。第三循序渐进,引导学生观察、猜想、验证,借助可以拉动的平行四边形可以直观的让学生感受到什么变了,什么没变,让学生在理解的基础上学习,递进的学习,逐步推导。第四建立在上一步的基础上发展,通过新课程提倡的合作交流的学习方式进行,找出平行四边形与转化后的长方形的关系,并推导出平行四边形的面积计算公式。最后,公式符号化,发展学生的符号思想。

  三、巩固练习

  1、抛出洋葱微课里的题

  2、平行四边形花坛的底是6m,高是4m,它的面积是多少?

  3、89页第2题(注重底与高对应)计算下面每个平行四边形的面积。

  4、90页第6题

  【设计意图】根据学生掌握知识的规律,针对本课的教学目标,我设计的练习题由浅入深,循序渐进。通过这些练习是为了让学生会运用平行四边形的知识去解决简单的数学问题。在第2题练习中发展创新意识,让学生明白“对应关系”即“底”和“高”对应,引导学生在理解的基础上牢固的掌握知识,能根据具体需要迅速再现出来。

  四、课堂总结

  通过今天的学习你有什么收获?你还有什么疑问?

  【设计意图】课堂总结,让学生说一说收获,还有什么疑问,实现知识的系统小结,是为了学生更好的学习和改善教师教学的重要部分。可以系统的知道学生学到了什么,哪方面还需要巩固。为后续教学提供方向。

  五、作业布置

  六、板书设计

《平行四边形的面积》教学设计8

  教材分析

  1、课标分析:《数学课程标准》提出:“要让学生在参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些体验。”所谓体验,从教育的角度看,是一种亲历亲为的活动,是一种积极参与活动的学习方式。本节课的设计充分利用学生已有的生活经验,把这一学习内容设计成实践活动,让学生在自主探究合作学习中理解平行四边形面积的计算公式,并了解平行四边形与其他几种图形间的关系,让学生经历学习过程,充分体验数学学习,感受成功的喜悦,增强信心,同时培养学生思维的灵活性,与他人合作的态度以及学习数学的兴趣。

  2、教材分析: 《平行四边形的面积》是义务教育课程标准实验教材五年级上册第五单元第一课时的内容。该内容是在学生已学会长方形、正方形的面积计算,已掌握平行四边形的特征,会画平行四边形的底和对应的高的基础上教学的。通过本节课的学习,能为学生推导三角形、梯形面积的计算公式提供方法迁移,同时也为进一步学习立体图形的表面积做了准备。 由于学生已掌握了长方形的面积计算公式,所以当学生掌握了割补法,把平行四边形转化成长方形之后,平行四边形面积的计算公式就自然而然的产生了。本节课的教学不仅培养了学生的观察比较、分析综合的`能力,还培养了学生动手操作、探索创新的能力,是学习多边形面积计算,掌握转化思想的起始内容。

  学情分析

  五年级学生正处在形象思维和逻辑思维过渡时期。他们有了一定空间观念和逻辑思维能力。但对于理解图形面积计算的公式推导和描述推导的过程还是有难度的。这就需要教师利用生动形象的教学媒介让学生去参与、去操作、去实践,才能让学生通过体验,掌握规律,形成技能。这节课中生动形象的多媒体有助于学生将这些抽象的事物转化为易于理解、易于接受的事物,多媒体的使用在教学中起到了不可替代的作用。

  教学目标

  (1)使学生通过探索理解和掌握平行四边形的面积公式,会计算平行四边形的面积。

  (2)通过操作,观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。

  (3)培养学生学习数学的兴趣及积极参与、团结协作的精神。

  教学重点和难点

  教学重点:使学生通过探索、理解和掌握平行四边形的面积、计算公式、会计算平行四边形的面积。

  教学难点:通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形间的联系,推导出平行四边形的面积公式。

  教学过程

  一、情感交流

  二、探究新知

  1、旧知铺垫

  (1)、说出平面图形名称并对它们进行分类。

  (2)、计算正方形、长方形的面积。(强调长方形面积计算公式)

  设计目的:从学生熟悉的知识点入手,能够降低门槛顺理成章的引入新知识。

  2、 导入新课

  3、 探究平行四边形面积计算方法。

  (1)、在方子格中数出长方形的面积。

  (2)、在方子格中数出平行四边形的面积(不满一格的按半格计算)。要求学生说出平行四边形对应的底和高。

  (3)、通过观察表格,试着猜测平行四边形的面积计算方法。

  (4)、共同探讨如何计算平行四边形的面积。

  ①出示平行四边形,引导学生明确其底和高。

  ②学生在学具上标明其底并画出对应的高。

  ③讨论:能否把平行四边形转化为已学过的平面图形再计算(保证面积不会发生变化)

  ④小组交流如何操作的。(割补法)

  ⑤学生代表汇报各组的操作方法以及得到的结论。

  ⑥幻灯片演示割补的过程。

  ⑦引导学生归纳平行四边形面积计算公式。(让学生明确算平行四边形面积的必须条件)

  4、 课堂小练笔。

  设计目的:达到让学生动手操作,从实践中掌握知识,并能够从实践中总结知识。让学生明白知识来源于生活,又用于生活。

  三、课堂练习

  四、小结本课

  五、课堂作业

  板书设计

  平行四边形 面积 = 底 × 高

  长方形 面积 = 长 × 宽

  S表示平行四边形的面积 a表示底 h表示高

  S=a×h s=a.h S=ah

《平行四边形的面积》教学设计9

  教学内容:九年义务教育课程标准实验教科书,第九册P80~P81的内容。

  教学目标:1、使学生通过数、剪、拼、算等实际操作,推导平行四边形的面积计算公式。

  2、能应用平行四边形的面积计算公式解决实际问题。

  3、在割补、观察与比较中,初步感知与转化,变换的数学思想方法,发展学生的空间观念。

  教学重点:平行四边形的面积计算公式的推导与应用

  教学难点:理解和掌握用割补法推推导平行四边形的面积计算公式

  教具准备:平行四边形纸、长方形纸、多媒体

  学具准备:平行四边形纸、剪刀、尺子

  教学过程:

  一、创设情景,引出课题

  1、创设情景

  同学们,这几年我们东莞市许多学校都在创建绿色学校,校园绿化得越来越漂亮。现在跟着镜头一起去看看吧!(播放校园绿化情况)

  2、引出课题

  提问:他们在讨论什么?(长方形的花坛大还是平行四边形花坛大?)要判断哪个花坛大必须知道什么?(长方形的花坛的面积和平行四边形花坛的面积)我们已经知道长方形的面积是怎样计算的,可是平行四边形的面积又是怎样计算的呢?这节课我们就来共同研究,并板出课题。

  二、新课

  1、自学,用数方格的方法计算平行四边形的面积。

  (1)多媒体出示P80图和表格

  平行四边形底高面积

  mmm2

  长方形长宽面积

  mmm2

  (2)读一读数方格时要注意的地方

  (一个方格代表1平方米,不满一格都按半格计算)

  (3)让学生在电脑上填写表格

  (4)提问:观察表格的数据,你发现了什么?

  (5)学生汇报。

  (6)小结:通过数方格我们发现这两个花坛的面积是同样大的。

  2、推导平行四边形的'面积计算公式

  (1)猜想

  如果都用数方格的方法去计算平行四边形的面积的话,大家感觉怎么样?(比较麻烦)那不数方格能不能计算出平行四边形的面积呢?(能)你有什么好办法?(推导出平行四边形的面积公式)好主意。刚才在数方格的时候已经有同学发现平行四边形的面积=底高,那是不是所有的平行四边形的面积都是这样计算的?下面我们一起合作验证。

  (2)验证

  a.动手操作

  剪——平移——拼,把一个平行四边形变成一个长方形。

  b.讨论:

  1.剪拼出的长方形的长和宽与平行四边形的底和高有什么关系?

  2.剪拼出的长方形的面积和原来的平行四边形的面积有什么关系?

  3.平行四边形的面积=?

  (3)汇报并点拨(在投影上展示)

  a.把平行四边形分成一个三角形和一个梯形

  b.把平行四边形分成两个梯形

  (4)小结:平行四边形的面积=底×高(并板书)

  (5)提问:用字母怎样表示这个公式?S、a、h各表示什么?

  (6)齐读公式,加深印象。

  3、教学例题

  (1)出示例题:平行四边形花坛的底是6m,高是4m,它的面积是多少?

  (2)读题,分析已知条件和问题。

  (3)独立完成。

  (4)在黑板上展示并评析。

  三、巩固练习

  1、填空

  (1)我们可以把一个平行四边形通过分割和平移转化一个(),这个()的()和平行四边形的底相等,()的()和平行四边形的高相等。所以平行四边形的面积=()×(),用字母表示S=()×()

  (2)要求平行四边形的面积,必须知道()和()

  2、一个平行四边形的停车位的底长5m,高2.5m,它的面积是多少?(由学生在多媒体课件上输入答案)

  3、选择题

  求这个平行四边形的面积()

  (a)6×8(cm2)

  (b)6×4.8(cm2)

  4、提高练习

  (1)如图所示这个平行四边形的高是多少?

  (2)这两个平行四边形的面积相等吗?(P83第5题)

  5、拓展练习

  清溪镇碧月湾地产将以165万元人民币价格出售如图所示的一块地。现市场价是0.4万元。

  (1)这块地值得买吗?

  (2)如果“我”要购买,你有什么建议?

  四、质疑

  五、这节课你有什么收获?

  板书设计:平行四边形的面积

  长方形的面积=长×宽

  平行四边形的面积=底×高

  S=ah

  S=ah

  =6×4

  =24(cm2)

  答:(略)

《平行四边形的面积》教学设计10

  教学内容:小学数学(人教新课标实验版)五年级上册第79~81页。

  教学目的:

  1. 使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

  2. 通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。

  教学重点:平行四边形的面积的计算

  教学难点:平行四边形的面积公式的推导过程

  教具准备:课件、方格纸、平行四边形若干个

  学具准备:平行四边形四个,三角板,直尺,剪刀。

  教学过程:

  一、课件出示单元主题图

  (1),引入课题

  师:(1)从图中你发现了哪些图形?

  (2)你们会计算它们的面积吗?

  (3)从今天开始我们就来学习第5单元多边形的面积的计算,(板第5单元多边形的面积)在这个单元中包括平行四边形,三角形,梯形,及组合图形面积的计算,这节课我们先来学习平行四边形的面积的计算。(板平行四边形的面积)

  师:下面我们就以这两个花坛为例。课件出示(2)

  二:通过数方格图,初步感知

  (1)你觉得这两个花坛哪个更大一些?

  生1:

  (2)怎样比较两个花坛的大小?

  (3)你会计算的平行四边形面积吗?

  (4)用什么样的方法能计算出它的面积?

  (5)下面就用数方格的'方法在小组内来试一试。课件出示(3)

  (6)最后你发现了什么?

  通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形的面积等于它的底乘高;这个长方形的面积等于它的长乘宽。

  (7)根据你的发现你还能想到什么?

  三、学生动手操作,自主探究

  用数方格的方法可以得到平行四边形的面积。如果要我们计算我们学校的占地面积,这样就比较麻烦。下面我们不用数方格的方法还有没有更简便的方法呢?课件出示(4)

  自主探究,推导公式

  (组内学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。)

  请三个小组的学生演示剪拼的过程及结果。(师:为什么要转化成长方形呢?生:因为长方形是特殊的平行四边形,它的面积等于长乘宽)

  教师用课件(5)(6)演示剪——平移——拼的过程。

  我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?

  小组讨论。出示讨论题。(7)

  (1)拼出的长方形和原来的平行四边形比,面积变了没有?

  (2)拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

  (3)能根据长方形的面积计算公式推导出平行四边形的面积计算公式吗?

  小组汇报,课件演示(8)

  学生讨论板书出平行四边形面积公式:

  长 方 形 面 积 === 长 × 宽

  ‖ ‖ ‖

  平行四边形面积 === 底 × 高

  一般用s表示图形的面积,a表示图形的底,h表示高,请同学们把平行四边形的面积计算公式用字母表示出来。

  板书:s==a×h==a·h===ah

  师:刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪几个条件?(底和高,强调高是底边

  四:巩固新知,反馈练习。

  1、课件出示例1(9),读题理解题意。学生试做,交流作法和结果。

  2、实践应用(10)

  3、思维拓展

  (1)出示课件 (11),引导学生思考

  (2)组织学生讨论

  (3)课件演示等底等高的两个平行四边形的面积相等

  五:课堂总结:通过今天的学习,你有那些收获?还有那些遗憾的地方?

  评析:

  王彬老师这一节课的教学是在64名学生的大班中实施的,可后,听课老师的一致评价是学生学得扎实,理解的透彻,教师多媒体课件展示效果好。也曾看过上海潘晓明老师执教此课的案例,比较之后,有下列思考:

  一:大班教学中的放与收的问题

  新课程的数学教学提出国成型目标这一概念,即让学生体验知识产生、形成的过程,强调学生自主的思考与实践。在潘晓明老师的课例中,学生直接拿出纸上印好的平行四边形,然后自己动脑筋、想办法计算出纸上平行四边形的面积,教师参与学生活动,并适时启发、引导。很显然,这样的课堂是开放的,对于每一个学生也确实是一种挑战,但潘晓明老师执教的班级只有30名学生,对于64人的大班,这样开放的问题会导致一些学生无从下手,教师的指导也必然照顾不全,再加一节课的时间有限,所以,“放”到怎样的程度,如何能照顾到全体,王彬老师的课堂设计给我们做了一个很好的示范:从生活情境中一比大小引入,在学生已有的数方格的经验中先让学生感知平行四边形的面积与底河搞有关系,为下一步的学习进行铺垫,在进一步的探索中,学生指向明显,很快通过剪拼的方法将平行四边形转化成长方形。在此过程中,有教师的引导,也有学生的独立探索与思考,很好的把握了大班教学中放与收的关系。

  二、多媒体课件演示的时效性问题

  本课的多媒体课件使用避免了当先许多老师课件使用走形式,无时效的弊病,体现了以下特点:

  1、现实情境的真实感让学生体会到数学学习的价值;

  2、生动形象的过程演示,使学生充分理解算理;

  3、丰富多彩的课后练习,拓展了学生的思路,开阔了学生的思维。

  一节好课的标准很多,如何在一节课中既落实双基,又培养能力、发展智力,同时情感、态度、价值观也得到提升,这是我们每一位教师追求的目标,可在一节课的教学中,我们很难将这些目标全部落实,但我们可以以某一方面为着眼点。王彬老师的这节课或许能给与大家更多的启发。

《平行四边形的面积》教学设计11

  一、教学目标:

  1、使学生通过实际操作和讨论分析,探索并掌握平行四边形的面积公式,能应用公式正确计算平行四边形的面积,解决一些简单的实际问题。

  2、使学生经历观察、操作、测量、填表、讨论、推理等数学活动过程,初步体会图形转化的意义和价值,培养空间观念,发展初步的逻辑思维。

  3、使学生在探索平行四边形面积公式的活动中,进一步增强与同伴合作交流的意识,初步感受“变”与“不变”的辩证思想。

  二、教学重点:

  理解并掌握平行四边形的面积公式。

  三、教学难点:

  理解平行四边形的推导过程。

  四、教学过程:

  一、回顾导入:

  提问:我们学习过哪些平面图形?你已经会求哪些平面图形的面积?

  小结:通过前面的学习,我们已经掌握了正方形、长方形面积的计算方法,今天我们就运用一些学过的知识来研究平行四边形面积的计算方法。

  (一)、探究新知:

  1、教学例1。

  出示例1图,提问:下面每组的两个图形面积相等吗?说说你是怎么比较的?交流后指出:可以数格子,可以移一移,转化成右边的图形再比较。演示移一移的过程,并说明:把①号图形中小长方形剪开、平移、拼合,和②号图形面积相等;把③号图形中小长方形剪开、平移、拼合,和④号图形面积相等。

  讨论:数格子和移一移的方法,哪个更方便?提问:通过刚才的操作,你能说说我们是怎样比较的?

  指出:我们把每组里左边的不规则图形,经过剪、移、拼,变成了和右边完全一样的长方形或正方形,比较出每组两个图形面积相等,这个过程叫作转化,是计算图形面积的一种常用方法。今天我们就运用这种转化的的思想来研究平行四边形面积的计算。(板书:转化)

  (设计意图:引导他们初步体会:复杂图形可以转化成简单的图形,割补,平移是实现转化的基本方法,转化前后的图形形状变了但面积不变。

  2、教学例2。

  出示题目,提问:你能把这个平行四边形转化成长方形吗?拿出准备好的平行四边形,想一想你打算怎么剪,先画一画,然后再剪一剪。学生操作后,交流:谁愿意把自己的操作过程说给同学听听?

  预设1:从平行四边形的一个顶点出发,沿着一条高剪成一个三角形和一个梯形,将三角形向右平移或将梯形向左平移,转化成长方形。

  预设2:沿平行四边形一条高,剪成两个梯形,将其中一个梯形向左或向右平移转化成长方形。

  投影演示后,追问:还有不同的剪法吗?

  比较:大家的剪、拼方法不完全相同,这些方法之间有什么相同的地方吗?(都是沿着平行四边形的一条高剪开的)

  追问:为什么都要沿着平行四边形的高剪开?

  指出:沿着高剪开,能使转化后的图形中出现直角,从而也就能使平行四边形转化为长方形。

  (1)设疑:任意一个平行四边形沿着高剪都能转化成长方形吗?平行四边形转化成长方形后,它的面积大小变化了吗?与原来的平行四边形之间有什么联系?

  (2)动手操作,然后小组讨论:

  转化成的长方形与平行四边形面积相等吗?

  ②长方形的长和宽与平行四边形的底和高有什么关系?③根据长方形的'面积公式,怎样求平行四边形的面积?

  (3)全班交流:你是怎样知道平行四边形的面积的?为什么说平行四边形与转化成的长方形面积相等?

  指出:从转化过程可以看出,这两个图形尽管形状变了,但面积没变。指名读表中每个平行四边形的底、高和面积,提问:根据这几组数据,你认为平行四边形的面积与它的底和高有什么关系?

  进一步指出:大家的想法究竟对不对呢,我们再做进一步研究。

  (4)分析关系,推导公式。

  提问:要求平行四边形的面积,就是求哪个图形的面积?为什么?长方形的面积公式是怎样的?它的长、宽与平行四边形的底、高有什么关系?平行四边形底与高的乘积是长方形的面积吗?也是平行四边形的面积吗?

  根据交流形成板书:因为

  长方形的面积=长×宽

  转化为平行四边形的面积=底×高

  提问:如果用S表示平行四边形的面积,a表示底,h表示高,你能用字母表示平行四边形的面积公式吗?板书:S=a×h,齐读。

  (二)、回顾:

  谁来说说我们是怎样推导平行四边形的面积公式的?你从推导过程中有什么体会?

《平行四边形的面积》教学设计12

  设计说明

  在学习本节课之前,学生已经掌握了一定的求图形面积的方法,积累了一些求图形面积的实际经验,针对学生的学情,本节课是这样设计的:

  1.通过具体情境提出计算平行四边形面积的问题。学生已经学习了长方形面积的计算方法,在复习这些知识时,逐步将问题转到平行四边形的面积上,从而使学生感到学习新知识的必要性,也容易引起他们认知上的冲突。

  2.动手实践、主动探索、合作交流是学生学习数学的主导方式。由直观到抽象,层层深入,遵循了概念教学的原则和学生的认知规律。学生通过动手操作,把平行四边形转化成长方形,再现已有的知识表象,借助已有的知识经验,进行观察、分析、比较和推理,概括出平行四边形面积的计算公式。

  3.满足不同学生的求知欲,体现因材施教的原则。通过灵活多样的练习,巩固平行四边形面积的计算方法,提高学生的思维能力。

  课前准备

  教师准备 PPT课件 平行四边形纸片 方格纸剪刀

  学生准备 硬纸板做的平行四边形 三角尺 剪刀

  教学过程

  ⊙创设情境,提出问题

  1.出示公园里的一块长方形空地的示意图:长10米,宽6米。

  提出问题:同学们,公园里有一块空地要进行绿化,你能算出这块空地的面积是多少吗?

  生:10×6=60(平方米)

  师:除了用计算的方法,我们还有其他的方法得到图形的面积吗?

  生:数方格。

  2.出示空地中间一块平行四边形的区域,底边6米,斜边5米,高3米。

  提出问题:这块地是什么形状的?你们能用计算的方法求出它的面积吗?

  3.学生回答后引入新课:这节课我们就来学平行四边形的面积。

  设计意图:这一环节的设计,教师对主情境加以修改,先来复习长方形的面积计算方法,既复习了旧知识,又为学习新知识做好铺垫,同时又巧妙地引入新内容,激起学生的大胆猜想,体现出数学就在我们身边,从而激发了学生学习数学的兴趣及积极性。

  ⊙猜想尝试,获取新知

  1.出示教材53页问题一。

  师:我们会求什么图形的面积?我们可以用哪些方法求图形的面积?

  学生讨论,猜想求这块空地面积的方法。

  预设

  生1:用长方形的面积公式进行计算,因为平行四边形的特点也是对边相等。

  生2:把平行四边形的相邻的两边相乘。

  过渡:究竟哪种方法可行呢?我们该如何来验证猜想是否正确呢?

  2.借助方格纸数一数,比一比。

  师:以前我们用数方格的方法得到了长方形和正方形的面积,那么用这种方法能得到平行四边形的面积吗?

  (1)请大家仔细观察方格纸上的两个图形,数一数。

  (2)得到结论:长是6米,宽是5米的长方形面积时30平方米,而底边是6米,斜边是5米的平行四边形所占的小方格数不够30个,也就是不足30平方米,我们不能用邻边相乘的方法来求平行四边形的面积。

  (3)提问:平行四边形的面积是多少呢?你是怎样数出来的?平行四边形的面积与它的底和高有什么关系?

  引导学生发现:18=6×3,其中18是平行四边形的面积,6和3分别是平行四边形的底和高。

  提问:难道平行四边形的面积可以用底乘高来计算吗?我们会求长方形的面积,你能把平行四边形转化成长方形吗?

  设计意图:这个环节用数方格的方法得到了图形的面积,这种方法是学生熟悉的、直观的计算面积的方法。同时呈现两个图形,暗示了它们之间的联系,为下面的'探究做了很好的铺垫。

  3.推导平行四边形的面积计算公式。

  师:下面我们来剪一剪、拼一拼。看看平行四边形和长方形之间究竟有怎样的联系。(出示课堂活动卡)请大家根据课堂活动卡来完成活动。

  (1)质疑:上面的方法有一个相同之处,都是沿高剪开。为什么一定要沿高剪开呢?

  释疑:只有沿高剪开,才能出现直角,才能拼成一个长方形。

  (2)师生共同总结。

  ①通过剪一剪、拼一拼,把平行四边形变成了长方形。

  ②剪拼后的长方形与原来的平行四边形相比,面积不变。

  ③长方形的长和平行四边形的底相等,长方形的宽和平行四边形的高相等。

  (3)推导平行四边形的面积计算公式。

  长方形的面积=长×宽,得出:平行四边形的面积=底×高。

  字母公式:Sah

  (4)梳理平行四边形面积计算公式的推导方法。

  师:刚才大家在剪拼的时候,都把平行四边形变成了长方形,你们为什么都把平行四边形变成长方形呢?

  (学生汇报)

  师小结:同学们总结出的方法,其实就是数学上的转化法。通过转化,我们可以找到新旧知识之间的联系,从而解决新问题。在今后的生活、学习中,我们可以应用这种方法去解决问题。

  设计意图:此环节留给学生充分的探索、交流空间,使学生在剪、拼等一系列实践活动中理解、掌握平行四边形与转化后的长方形之间的联系,从而推导出平行四边形的面积计算公式。在探索活动中,使学生学会与他人合作,同时也使学生学到了怎样由已知探索未知的思维方式与方法,培养他们主动探索的精神,让学生在活动中学习,在活动中发展。

《平行四边形的面积》教学设计13

  教学目标:

  1、知识与技能:

  (1)使学生通过实际操作和讨论思考,探索并掌握平行四边形的面积计算公式,并能运用公式正确计算平行四边形的面积。

  (2)能运用平行四边形的面积公式解决相应的实际问题。

  2、过程与方法:

  使学生经历观察,操作、测量、讨论分析、比较归纳等数学活动过程,体会“等级变形”的思想方法,培养空间观念,发展初步的推理能力。

  3、情感、态度与价值观:

  (1)渗透转化的数学思想方法。

  (2)使学生在探索平行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感。

  教学重点:

  探索并掌握平行四边形面积的计算公式。

  教学难点:

  1、理解平行四边行面积计算公式的推导过程,并正确应用平行四边形的面积计算公式解决相应的实际问题。

  2、让学生在动手实践与交流中引导学生从不同的途径和方法去探索平行四边形面积的计算方法。

  教具、学具准备:

  1、多媒体课件、自制教具。

  2、每个学生准备1把剪刀、一张平行四边形纸片。

  教学流程:

  一、创设情境,引入课题:

  师:同学们,今天老师将要和大家一块儿探讨怎样的数学问题呢?首先老师给大家讲一个有趣的故事,大家想听这个故事吗?从前有一个老财主,他感觉自己的年龄越来越大了,身体也一天不如一天了,就决定把自己最好的'两块儿地分给他最疼爱的两个儿子。(课件)于是他把左边的这块儿地分给了第一个儿子,把右边的这块儿地分给了另一个儿子,可两个儿子分到地后都不满意。都说我那个老爹呀,真偏心把大的地分给了他,小的留给了我,老财主伤心的落泪了。谁能帮帮他呢?你们有什么好的办法吗?

  生:

  现在老师把两个图形画在了方格纸上。(课件出示两个图形)师:左边的同学来数一数这块儿长方形的地,右边的同学来数一数平行四边形的地,看看它们的面积各是多少。(注意:不满一格的都按半格计算)

  师:我们一块儿来数一数平行四边形的面积(课件)。同学们,通过数方格你们发现了什么?(疑惑)哦,原来两块儿地的面积一样大。

  (通过这个故事,我们知道了对父母、对长辈要尊敬;与兄弟姐妹要和睦;就好比我们这个大家庭,我们同学之间要团结,不能为了一些小事而斤斤计较或发生矛盾,你们说是吗?)

  师:看来图形的面积大小用眼睛看是不准确的,数方格又太麻烦了,如果平行四边形的面积也有公式,是不是就方便多了。那平行四边形的面积公式到底是什么呢?我们这一节课就来研究这个内容。(板书课题)

  二、探究新知,导出公式:

  1、猜想:

  师:我们在来观察这两个图形,想一想,除了面积相等以外,它们还有什么关系呢?(提示:看看长和底,宽和高)

  生:

  师:我们发现长方形的长和平行四边形的底都是6米,长方形的宽和平行四边形的高也都是4米,而且它们的面积也相等。那么根据这些数据,我们能不能大胆的猜想一下平行四边形面积公式呢?

  生:

  师:你们是怎么推导出这个公式的呢?

  师:我们四人一组可以商量商量,也可以拿出我们手中的平行四边形通过剪、拼或平移,看能不能拼成我们以前学过的平面图形?(一个图只能剪一次)

  2、验证:

  (1)学生动手操作

  (2)小组演示

  (3)师课件演示

  边演示边说:我们沿着平行四边形的一条高剪开,把它平移到右边,就拼成了一个长方形。我们发现了什么?

  生:

  板书:长方形的面积=长×宽

  平行四边形的面积=底×高

  师:同学们,你们能不能完整的说说平行四边形面积公式是怎样推导的呢?

  (4)推导过程:(课件显示)

  我们把一个平行四边形通过剪拼、平移把它转化成一个长方形,长方形的长与平行四边形的底相等,拼成长方形的宽与平行四边形的高相等,因为长方形的面积等于长乘宽,所以平行四边形的面积就等于底乘高。

  (5)师:刚才我们不仅验证我们的猜想,而且运用的“转化”的思想。还学会了“平移”的方法,同学们的表现真不错。

  师:下边请同学们想一想如果用字母S表示面积,用字母a和h分别表示底和高,那么平行四边形的面积用字母怎么表示呢?

  师板书:S=ah

  3、面积公式的运用

  课件出示例题:有一块平行四边形的麦田,底是85。8米,高是75米,这块麦田的面积是多少平方米?

  三、巩固发展、实际运用:

  1、这时晶晶和贝贝遇到了一个难题,想请同学们来帮帮它们,你们愿意吗?它们在干什么呢?(课件)

  2、一幅平行四边形的装饰画高5是分米,底是高的3。5倍,这个平行四边形的面积是多少?(课件)

  四、课后延伸:

  师拿出活动的长方形木架,沿对角一拉,变成一个平行四边形,请同学们想想这两个图形的面积还相等吗?它们的周长呢?请同学课后来讨论这个问题好吗?

  五、反思与体会:

  同学们,想一想,这节课你有哪些收获呢?(生)

  师:看来,大家的收获还真不少,只要大家勤动手,勤动脑,就能学到更多的、更有趣的数学知识,并且可以运用这些数学知识来解决我们生活中的实际问题,是吗?好了,这节课我们就上到这,同学们再见!

《平行四边形的面积》教学设计14

  教学目标:

  1、经历动手操作、讨论、归纳等探索平行四边形面积公式的过程。

  2、探索并掌握平行四边形的面积公式,会用公式计算平行四边形的面积。

  3、在探索平行四边形面积公式的过程中,感受转化的数学思想;感受面积公式推导过程的条理性和数学结论的确定性。

  教学重难点:

  总结出平行四边形的面积公式。灵活运用平行四边形面积公式。

  教具准备:

  教师准备长方形一个、平行四边形两个;学生准备三个平行四边形。

  教学过程:

  一、复习导入

  师:同学们,我带来了长方形和平行四边形,说一说你都知道长方形的哪些知识。

  (学生说出长方形面积板书出来)

  师:你还知道哪些平行四边形的知识?

  (如有学生说不出高,师提醒)

  师:长方形和平行四边形有哪些相同点,又有哪些不同点?

  (平行四边形没有直角)

  师:刚有同学说到了面积,那你知道这两个图形哪个面积大吗?

  (学生说,比较)

  师:那有同学说将这个平行四边形剪拼以后,它们两个的面积就相等了,这个想法非常棒。那我这还有一个平行四边形,这两个比较呢?

  (学生说自己的想法)

  师:那既然我们不能这样比较出它们的面积,那你们想不想知道还有没有其他的方法可以知道平行四边形的面积?

  师:那我们这节课就一起来探索平行四边形的面积。(板书课题)

  二、讲授新知

  师:我们知道长方形有面积公式,能很快的算出它的面积,那平行四边形有没有呢?

  师:有,那我们又如何来探究呢?我们学过长方形的面积,可不可以像刚才那位同学说的.,将平行四边形转化成长方形我们再来探究呢?

  师:那接下来我们就一起来探究平行四边形的面积公式,先将平行四边形转化成长方形。先不要动,请带着老师的几个要求去做。(课件)

  师:(关注学生的剪法。让学生说说自己是怎样剪的,沿着什么剪的?如有很多同学剪的不标准,叮嘱沿着高剪以后,再让同学们剪一剪。多叫些学生来说想法。)

  师:通过同学们的探究你发现了什么,找到平行四边形的面积公式了吗?

  (生:说想法)

  (课件在演示一下平行四边形的底和高相当于转化后长方形的长和宽)

  师:那我有个问题,是不是平行四边形的面积就等于长方形的面积?

  (不是,并不是所有的平行四边形面积都等于长方形的面积)

  师:如果用S表示面积,那平行四边形的面积公式的字母表达是?

  (板书:S=ah)

  师:同学们今天很了不起,通过自己探索得到了平行四边形的面积公式,那就下来带着这个知识我们来完成几道题好吗?

  三、巩固练习

  师:1、计算下面平行四边形的面积,快速列算式不计算。

  师:2、同学们答得很快,都正确。那接下来将这两题写在本上。

  (集体订正答案)

  师:如果要想求平行四边形的面积的必备条件是什么?

  师:哦,也就是知道高和底就能求出它的面积,是吗?

  师:3、让我们一起来看看这道题。

  (让学生说说想法)

  师:也就是我们要找到相对应的底和高才能求出平行四边形的面积,那这条底边的高在哪?(课件出示)那能求出这条高的长度吗?

  (板书:S=ahh=S/aa=S/h)

  四、知识拓展

  师:同学们现在请比较一下这两个平行四边形的面积。

  (学生说想法)

  师:那这个呢?对它们的都是相等的,因为它们等底等高。

  五、小结

  师:本节课你学会了哪些知识?

《平行四边形的面积》教学设计15

  教学内容:

  冀教版五年级数学上56—57页

  教学目标:

  知识与技能:探索并掌握平行四边形的面积公式,会用公式计算平行四边形的面积。

  过程与方法:经历动手操作、讨论、归纳等探索平行四边形面积公式的过程。

  情感态度与价值观:在探索平行四边形面积公式的过程中,感受“转化”的数学思想;感受面积公式推导过程的条理性和数学结论的确定性。

  教学重点:

  探索并掌握平行四边形的面积公式,会用公式计算平行四边形的面积。

  教学难点:

  引导学生用“转化”的数学思想,探索长方形与平行四边形的关系,自主发现平行四边形的面积计算公式。

  教具、学具准备:

  多媒体课件、平行四边形卡片。

  教学过程:

  师:同学们,上课之前,我们热热身,进行一组口算接力赛。

  一、课前热身

  口算接力赛

  二、复习铺垫

  你还记得这些图形的名称吗?关于这些图形你还想到了哪些学过的知识点?

  学生汇报:说出这些图形的名称,根据自己的知识掌握水平说出相关的知识点。例如:长方形是轴对称图形,有2条对称轴,对边相等,4个角都是直角;长方形的面积=长×宽;正方形4条边都相等,4个角都是直角,正方形的面积=边长×边长;圆形也是轴对称图形,有无数条对称轴……。(重点让学生说出长方形和正方形的面积计算方法。)

  师:同学们对这些图形了解的知识还真不少,认识了这些图形,了解了他们的特征,还知道了长方形和正方形的面积计算方法,你们真了不起!接下来老师将和同学们一起探究其他几个图形的面积计算方法。这一节课,我们先来探究“平行四边形的面积”(板书课题)

  三、揭示课题、明确学习目标

  师:请同学们自主学习本节课的学习目标,明确本节课要掌握哪些知识。(多媒体出示学习目标)

  学习目标:掌握平行四边形的面积公式,会用公式计算平行四边形的面积。

  师:(多媒体出示平行四边形)下面我们一起探究平行四边形的面积。

  四、小组合作、探究新知

  1、动手操作、实践探究

  (1)、让同学们拿出手中的平行四边形,提出第一个思考的问题,边操作边思考。

  思考问题:怎样把手中的平行四边形剪一刀,变成长方形?小组合作动手试一试。

  (学生思考并动手操作,小组内交流。教师巡视,参与其中。)

  (2)、学生汇报。学生小组派代表用实物投影边展示边交流做法。

  教学预设:学生甲:我们小组是这样做的,沿平行四边形的一个顶点做一条高,沿高剪下,得到一个三角形和一个梯形,将三角形向右平移得到一个长方形。

  学生乙:我们小组是这样做的,做平行四边形的任意一条高,得到两个梯形,这两个梯形也可以拼成一个长方形。

  ……(有困难小组教师要给予引导。)

  2、交流讨论、发现关系

  (1)、师直观的多媒体演示“画——剪——移——拼”的过程。同时提出第二个思考问题。

  思考问题:拼成的长方形和原来的平行四边形有什么关系?

  (学生小组内交流讨论,教师参与其中,倾听意见,对于有困难的小组及时给予引导。)

  (2)、学生汇报。让学生充分交流自己的看法。

  教学预设:拼成长方形的面积和原来平行四边形的面积相等;拼成长方形的长和原来平行四边形的地相等,拼成长方形的宽和原来平行四边形的高相等……。

  3、归纳小结

  教师用多媒体直观展示:拼成“长方形的长和宽”与原来“平行四边形底和高”的关系;以及它们面积之间的关系。得出:

  拼成长方形的长和原来平行四边形的.地相等,拼成长方形的宽和原来平行四边形的高相等;拼成长方形的面积和原来平行四边形的面积相等。

  因为,长方形的面积=长×宽。所以,平行四边形的面积=底×高。

  用字母表示为:S=ah

  4、尝试应用

  师:学习知识,就是为了更好的应用所学来解决问题,请同学们试着解决下面问题。

  完成“试一试”

  (课件出示试一试习题)学生用自己喜欢的方式读题,教师提示学生写好公式在计算,指名板演其他学生完成在答题纸上。

  五、小结收获、总结得失

  1、学生小结

  师:同学们表现的都不错。大家来说说通过本节课的学习,你又收获了哪些知识?你还有哪些不明白的地方?你打算怎样解决?和你的同学交流一下!

  2、教师小结。

  师:真不少!不仅学会了知识,还学会了一些学习方法,在今后的学习中只要大家运用这些方法,一定会学会更多的知识。

【《平行四边形的面积》教学设计】相关文章:

《平行四边形的面积》教学设计02-24

面积教学设计04-07

《平行四边形面积的计算》教学设计06-03

平行四边形的面积公式教学设计11-05

圆的面积教学设计04-29

数学面积的教学设计06-04

《圆的面积》教学设计11-22

梯形的面积教学设计06-08

《面积和面积单位》优秀教学设计12-23